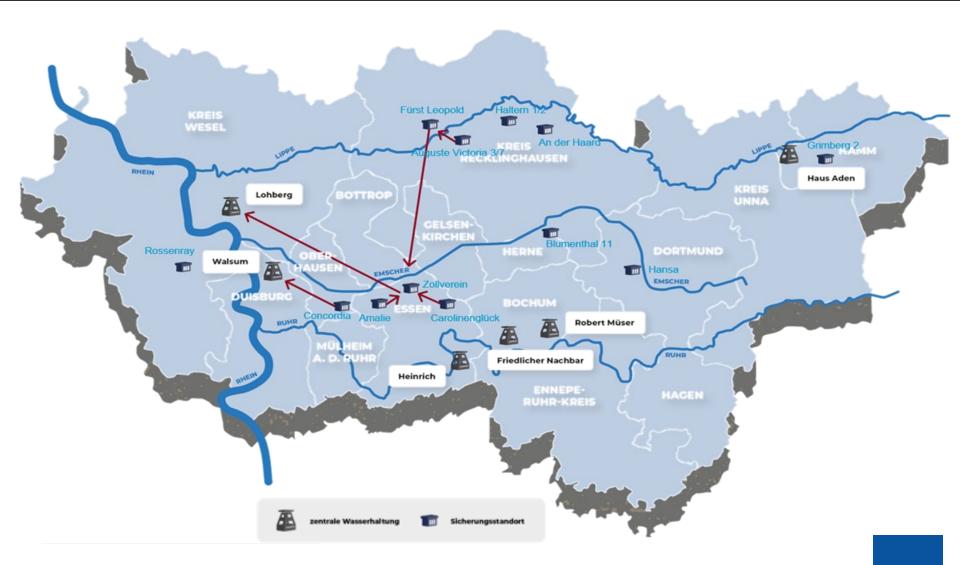
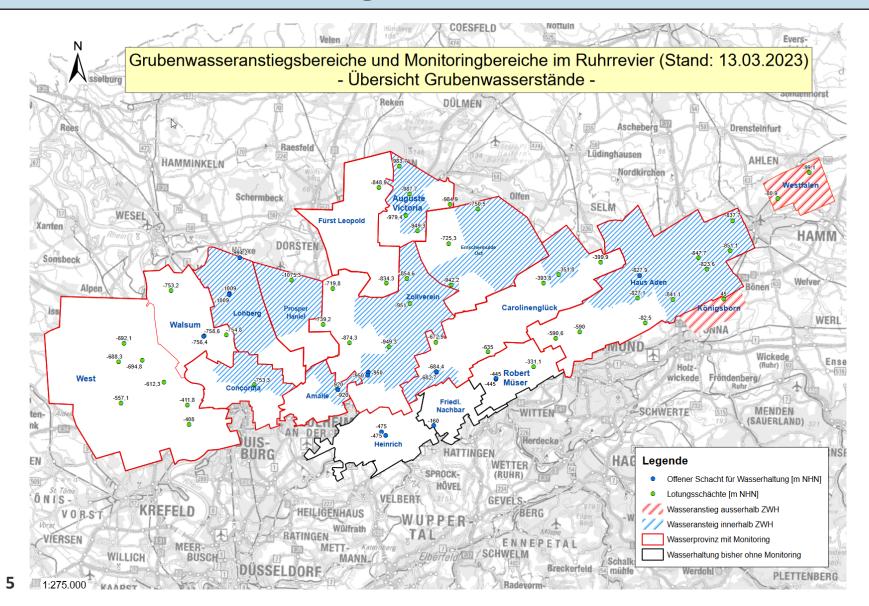
Sitzung der Konzeptgruppe Wasser Integrales Monitoring NRW

26.05.2023

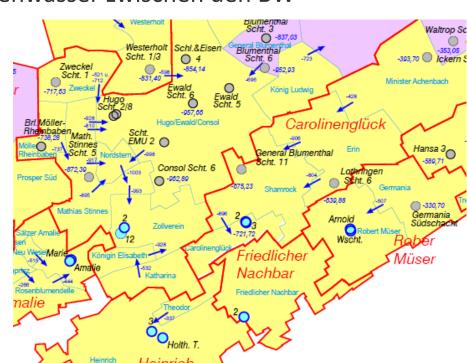
Dr. M. Denneborg & Dr. U. Boester

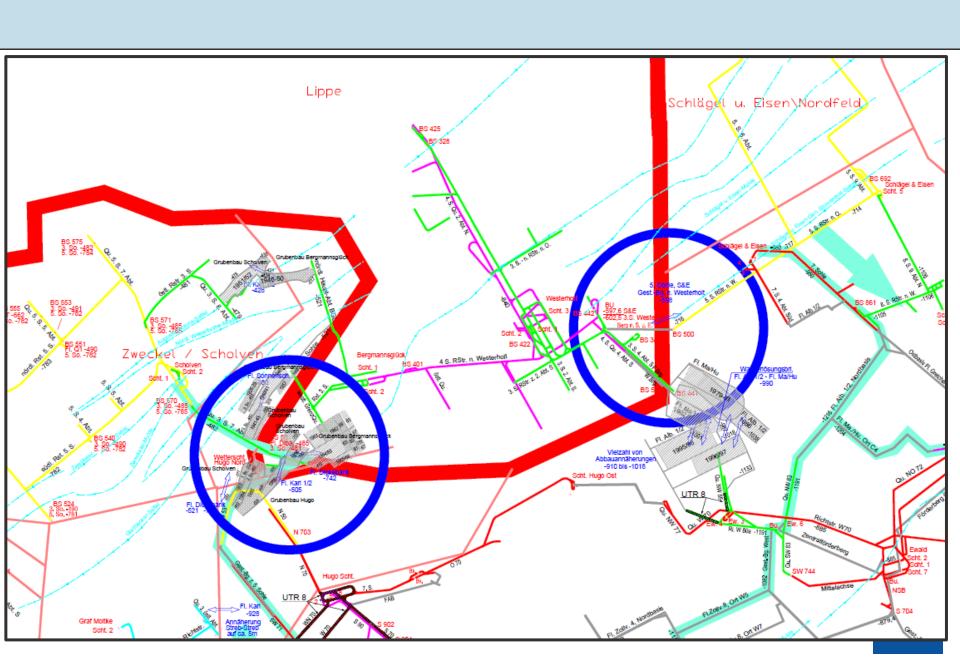

Auftrag RAG: Hydrogeologisches Gutachten

- 1. Systemverständnis Grubenwasseranstieg
 - Gliederung Wasserprovinzen, BW
 - Zuordnung der Messstellen zu Wasserprovinzen, Bergwerk und Zielen
- 2. Systemverständnis Bergbauzone
 - Auswertung bisheriger Messungen
 - Systembeschreibung Fließsysteme, v.a. Cenoman / Turon
- 3. Überwachung tiefer Grundwasserkörper (tGWK)
- 4. Empfehlungen für tiefe Grundwassermessstellen


1 Systemverständnis Grubenwasseranstieg

ahu


Grubenwasseranstiegsbereiche



Ziele

- Stammdaten der Messstellen
- Funktion im Monitoring
 - Zeigermessstellen / ergänzende Messstellen
 - Zuordnung zu Wasserprovinz und Bergwerke ("Box")
 - Frühwarnsystem: Übertritte Grubenwasser zwischen den BW
- Ggf. Warn- und Alarmwerte
- Soll / IST Vergleich Anstiege

Vorschlag Ergänzung Stammdaten Lotungsschächte

Lotungsschacht		Toebnummer		Wasserteilprovinz		GOK [mNN]		kgebirge mNN]	Endtiefe [mNN]		Gesamtlän ge [m]		Bezug Lotung [mNN]
Concordia 2		2558 5704 002		Concordia		33,8			-921,2		955		
Aktiv		Wasserstand Ziel 22.6.22 m NHN		Datum		Funktion		Warnwert		Alarmwert		Bemerk	
Nein			Wasse	erstrombild									
			○ Lotung Teilpro Wassel 5,0 Wassel Gepum 13,5 Der Wa	ollverein psstandort vinzen rströme rmenge m³/min npte Wassermenge aus asserprovinz Zollverein t (m³/min)	7-	Zweckel Scht. 1 Scht. 1 Emsch Analie Arnalie Scht. 2 Analie Scht. 3 Scht. 3 Scht. 3 Analie Analie Scht. 3 Scht. 3 Analie Scht. 3 Sc	AV Scht. 3/7 AV Scht. 1/3 Ewald Extended Extended Scht. 1/3 Ewald Extended Extende	Scht. 6 General Scht. 11 Carolinenglück 2 Carolinenglück 3 Friedl.	Blumenthal Lothringen Scht. 6	Rober	Waltra O Ick		

Datenhaltung und Datenzugriffsmöglichkeiten verbessen!

2 Systemverständnis Bergbauzone

Bedeutung Cenoman / Turon

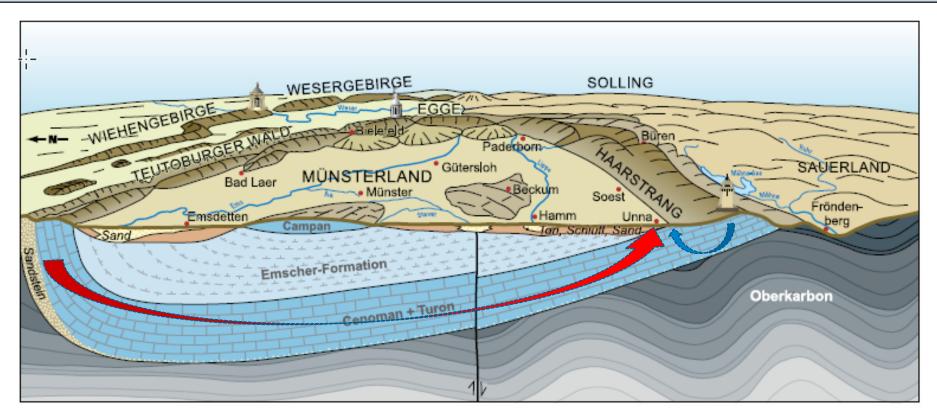
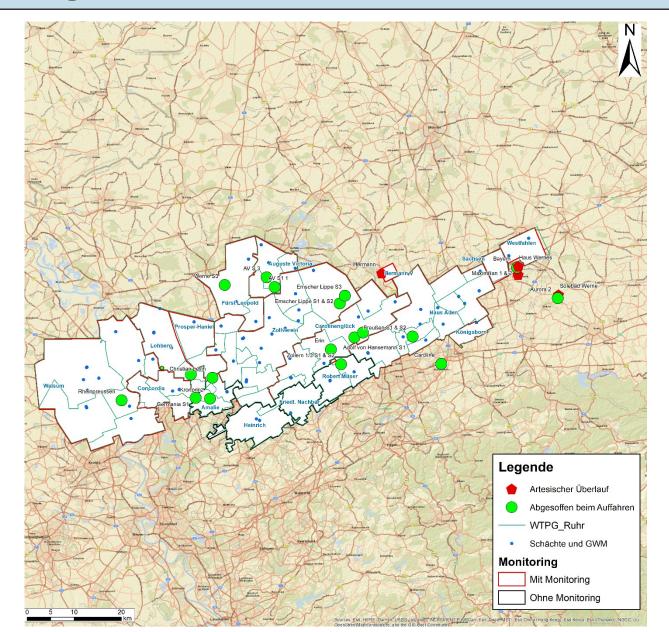


Abb. 1 Schematischer Schnitt durch das Münsterländer Kreidebecken (GD NRW 2016). Die Emscher-Formation trennt den oberen Grundwasserleiter (Campan, Quartär) vom unteren Grundwasserleiter (Oberkarbon, Cenoman/Turon)

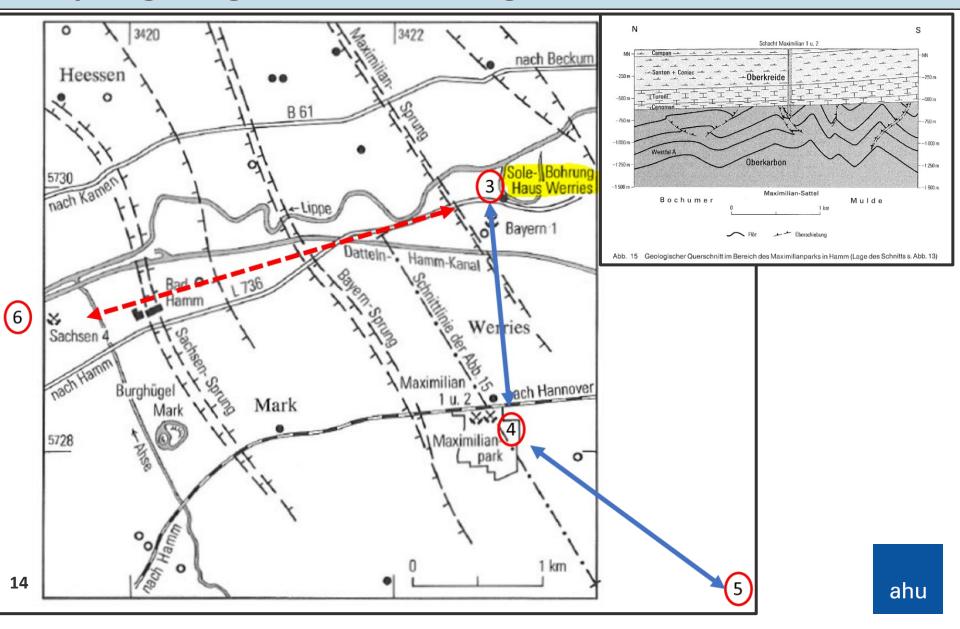
Funktion Cenoman / Turon

Großräumiger verkarsteter Grundwasserleiter ?

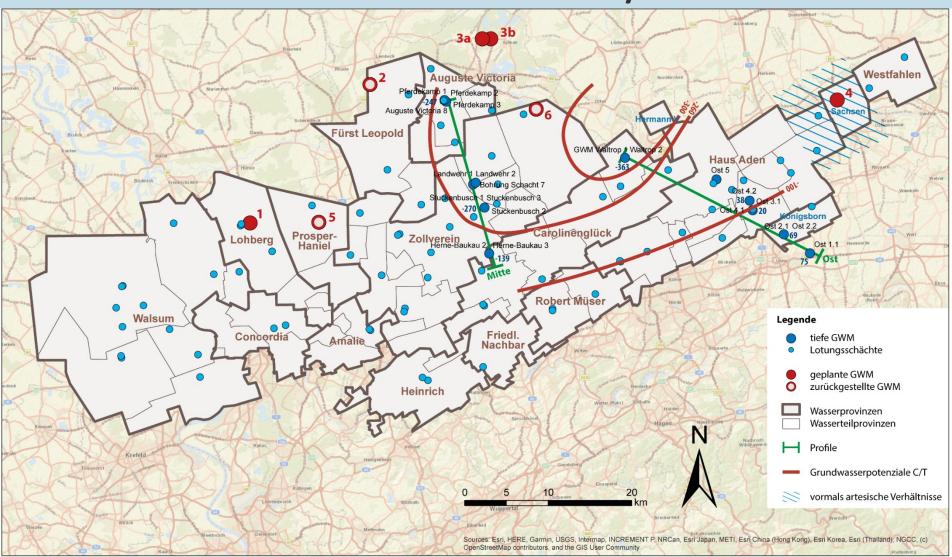
Vs.


Isolierter Grundwasserkörper ?

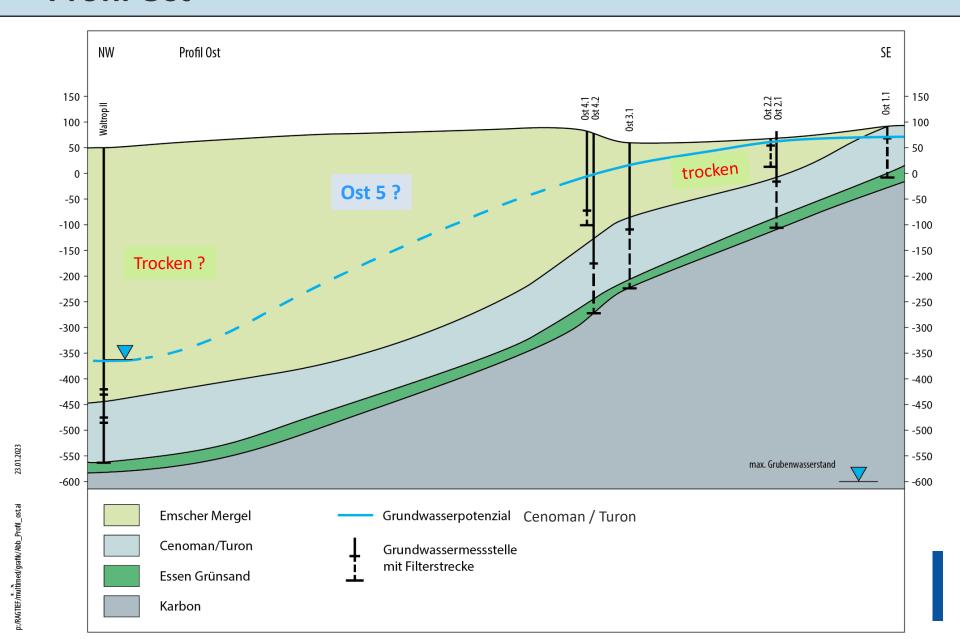
Auswertung 21 historischer Wassereinbrüche in BW


Nr	Lage / Koordinaten	BW	Schacht	Datum	Ereignis	Sonstiges	Wasserstand	Quelle
1		Blumenthal	Schacht 1	1877 1882 1930	Karbon bei -359 m angetroffen 1 Monat Pumpe ausgefallen Erneuter Wassereinbruch	Bis in die 60er Jahre wurden jährlich auch bis zu 0,5 Mio. t Salz / Sole gewonnen. Es ist anzunehmen, dass dies vorrangig aus dem C/T erfolgte.	Keine Angaben	Huske
2	51° 40′ 3,5″ N , 7° 8′ 9″ O 51° 41′ 11″ N, 7° 6′ 42″ O	AV	Schacht 1 Schacht 3 Teufe -820 (Nordfeld)	1899 1927	Karbon bei -580 m angetroffen Schwimmsandeinbruch und Verfüllung Strecken bis Schachtanlage 1/2	1. BW mit ab 1902 das Gefrierverfahren wg. Wasser in 40 m Tiefe	Keine Angaben Keine Angaben	Huske Hermann
3	7.883811316 7216415	g Haus		1972	715 m tiefes Bohrloch (120 mm) ins flözleeres Oberkarbon Bohrloch verstürzt	Absinken um 20 Meter 1938 durch Wassereinbruch im Schacht Sachsen 3	Artesischer Überlauf (1876 - 1972) PV 1966: Absenkung 4,9 m bei 15,2 m³/h	Michel 1990 Obermann 1966
4		Maximilian 1 & 2	Karbon – 580m Max. Sattel (Spezialfalte Karbon)	Feb/März 1914 bis 1920 Stillstand	Wassereinbrüche (Sole) aus dem unteren Kluftwasserhorizont führte zu: Absenkung in Bohrung Haus Werries um 50 m (1,5 km Entfernung) und Versiegen Überlauf) Nachlassende Ergiebigkeit Solebohrung Neuwerk (Werl) Absinken Wasserstand Solebohrung Aurora 2	Hydraulischer Zusammenhang Maximiliangraben mit weißem Mergel im C/T erwiesen	Artesischer	Driesen et al (1990) Obermann (1966)

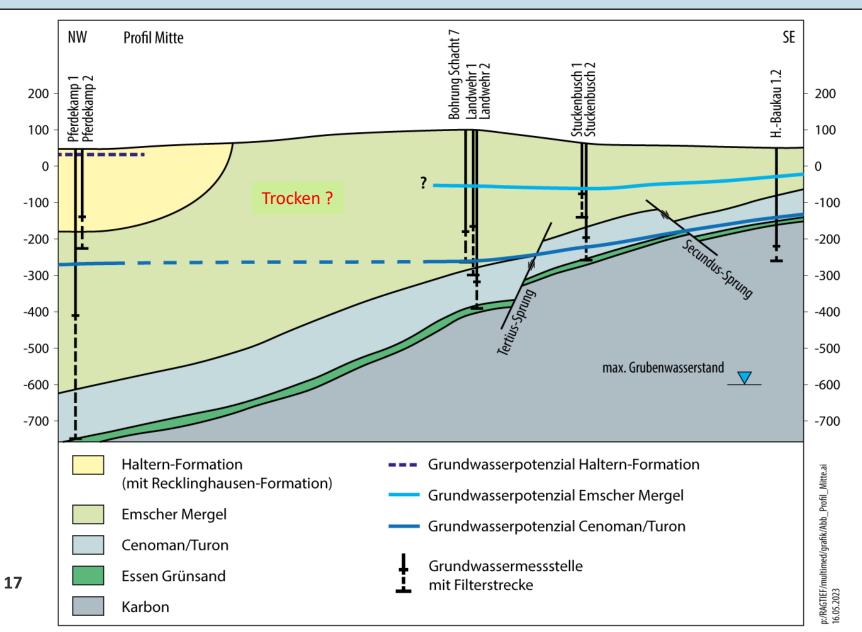
Auswertung 21 historischer Wassereinbrüche in BW



Hydrogeologie im Maximiliangraben



Potentiale Grundwassermessstellen C/T



Profil Ost

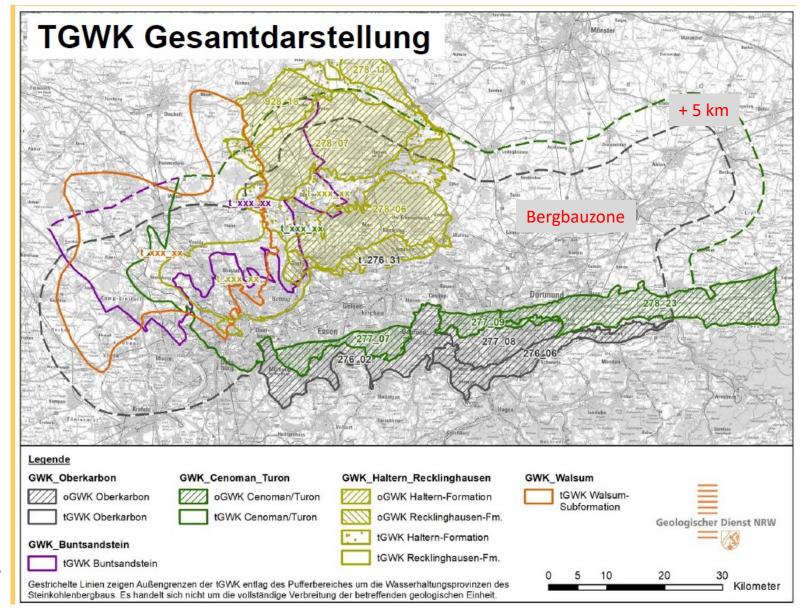
Profil Mitte

Hydrochemie: Umwelttracer im Ruhrrevier

Formation	Wasser- führung	Salinität TDS g/L tiefe GWM	CI/Br Verhältnis	Δ^{18} O und Δ^{2} H (stabile Isotope)	nauptionenanalyse:	Piper-Diagramm Zeitreihe (Tiefe GWM)
Emscher Formation	i.W. Auflockeru ngszone	0,33 – 35*	288-450	junges Grundwasser	Alkalische Wässer: überwiegend chloridisch; Na-Cl-Wasser	Stabile Hydrochemie (Wassertyp unverändert)
C/T	hoch	0,47-0,88 1.500-6.000		mittelaltes Grundwasser (aus <u>Salzlagerstätten</u>)	Ca-Mg-HCO3; normal erdalkalisch, überwiegend hydrogenkarbonatisch Na-HCO3-CI; alkalische Wässer überwiegend karbonatisch	Stabile Hydrochemie (Wassertyp unverändert)
E. Grünsand	hoch	-	-	-	-	-
Ober- karbon	mittel	150-200 (Wedewardt, 1995)	450-1.500	altes Grundwasser (<u>fossiles</u> <u>Meerwasser</u>)	Alkalische Wässer: überwiegend chloridisch; Na-Cl-Wasser	Stabile Hydrochemie (Wassertyp unverändert)

ahu

Empfehlungen für das Monitoring des Grubenwasseranstiegs


- Regionale + teufenabhängige Zuordnung der 750 Grundwasserproben
- Regionale + teufenabhängige Ergebnisdarstellung (gemäß Tabelle)
- Nutzbare hydrochemische Indikatoren:
 - Bromidkonzentrationen und Chlorid/Bromid-Verteilung [mg/L]
 - Lithium-Kationenkonzentration [mg/L]
 - Strontiumisotope 87Sr/86S
 - Wasserstoff- und Sauerstoffisotope δ 2H und δ 18O
 - Molares Natrium vs. Chlorid-Verhältnis: Na/Cl [mol/mol]

3 Überwachung tiefer Grundwasserkörper

Überblick tGWK

Übersicht tGWK

tGWK	Minimale Basis in der BBZ + 5 km [m NHN]	Nutzung	Potentiale [m NHN]	Beeinflussung bei -600 m NHN
Oberkarbon		Südl. früher Mineralwasser	Anstieg bis auf ca. – 600 geplant	ja
Cenoman / Turon	- 1000	Süden: Mineral Norden: Sole	Süden: + 80 Norden: -360 (Waltrop II) Norden: - 275 (P.kamp) außerhalb BBZ ?	Nein Druckfläche >> - 600
Emscher	- 800	Hausbrunnen (-100 u. GOK)	+ 100	Nein Druckfläche >> - 600
Haltern - Recklinghausen - Osterfeld	- 225	Trinkwasser Mineralwasser	Süden: + 80 Norden: + 100 Westen: + 20 bis – 100	Nein Druckfläche >> - 600
Walsum	- 300	Mineralwasser (?) Förderung aus Osterfeld Form.!	Westen: + 20 bis - 100 (Absenkung Brunnen Hövelmann)	Nein Druckfläche >> - 600
Buntsandstein	- 500	Keine (Sole)	?	Nein Druckfläche > -

4 Vorschläge für tiefe Grundwassermessstellen

Potentiale Grundwassermessstellen C/T

Tiefe Grundwassermessstellen

Nr	Name	Tiefe	Ziel- formationen	Ziele und Erläuterung					
1	Lohberg	-700	C/T	bislang keine Messungen im C/T (Verbreitungsgrenze). Ähnlich wie GWMS 5?					
3a 3b	Haltern	-800	C/T Karbon	Außerhalb BBZ. Potentiale C/T und Karbon sollten höher als in der BBZ sein.					
4	Sachsen	-600	C/T	bislang keine Messungen im C/T ehemals artesische Zone. Hoher Anstieg wg. Hoher Durchlässigkeit und Zustrom von Süden?					
	Zurückgestellte Grundwassermessstellen								
2	Wulfen	-150	Haltern	Ausreichend Messstellen vorhanden					
5	Prosper	-250	C/T	Ähnliche wie bei GWMS 1 erwartet					
6	Haard	-150	Haltern	Ausreichend Messstellen vorhanden					

5 Offene Fragen, Ergebnisse und Empfehlungen

Begründung weiterer tiefer Grundwassermessstellen

- Überwachung der Auswirkungen des Grubenwasseranstiegs
 - Bei einem Grubenwasseranstieg bis ca. -600 m NHN bleibt das Potenzialgefälle zum C/T und höheren Grundwasservorkommen bestehen.
 - Grundwasserbezogene Veränderungen in den überlagernden Grundwasserleitern sind ausgeschlossen.
 - Die Basis der Haltern Formation liegt bei ca. -225 m NHN. Dennoch empfiehlt sich eine frühzeitige Erfassung der hydrochemische Hintergrundwerte und Druckpotenziale.
- Überwachung tGWK
 - Eine Überwachung der tGWK ist auch eine Aufgabe des Monitorings, falls
 Auswirkungen durch den Grubenwasseranstieg möglich sind.

Offene Fragen

- Hydraulische Eigenschaften und Funktion des C/T:
 - Vor-Bergbau Phase
 - Bergbauphase
 - nahe Zukunft (Anstieg bis ca. -600 m NHN)
 - ferne Zukunft (hydraulischer Ausgleich)
- Wie ist der Absenkungsschwerpunkt im C/T zu interpretieren?
- In welcher Höhe erfolgt eine Wiederergänzung des C/T aus dem Deckgebirge, von Süden und von Norden?

Ergebnisse und Empfehlungen I

- Vorschlag von 4 Standorten für weitere tiefe Grundwassermessstellen,
 3 Standorte zunächst zurückgestellt
- Umwelttracer im hydrochemischen Monitoring nutzen
 - Auswahl hydrochemischer Umwelttracer als Indikatoren;
 Fingerprinting der Herkunft des Grundwassers (bspw. Chlorid, Bromid, Lithium)
 - Ausgewählte (begründete) Parameter / Indikatoren im Monitoring
- (Rollen-)Zuordnung der Lotungsschächte und GWM
 - Optimierung der Datenhaltung und Datendarstellung (intern/extern)

Ergebnisse und Empfehlungen II

- Numerisches Grundwassermodell Münsterländer Kreidebecken
 - Überprüfung Hypothesen (Systemvorstellung, Funktion C/T)
 - Vorschläge für weitere tiefe GwMessstellen
 - Prognosetool Grubenwasseranstieg

Vorschlag für das weitere Vorgehen

- Berichtsentwurf wird verteilt
- Einarbeitung der Rückmeldungen
- Fertigstellung Bericht
- ••••
- Errichtung der GwMessstellen
- Ergänzung Monitoring

