

Integrales Monitoring für den Grubenwasseranstieg im Steinkohlenbergbau in Nordrhein-Westfalen

Bericht des Jahres 2024

н	Θ	ra	นร	n	ρ	h	ρ	r.

Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes NRW (MWIKE) Ministerium für Umwelt, Naturschutz und Verkehr des Landes NRW (MUNV)

Federführung:

Bezirksregierung Arnsberg, Abteilung Bergbau und Energie in NRW Goebenstraße 25 44135 Dortmund

Bearbeitung:

Bezirksregierung Arnsberg, Abteilung Bergbau und Energie in NRW

und

Ingenieurbüro Heitfeld-Schetelig GmbH Jean-Bremen-Straße 1-3 52080 Aachen

Tel: 0241 / 70 51 60

E-Mail:grubenwasser.nrw@ihs-online.de

Vorwort

Mit der Einstellung des Steinkohlenbergbaus in Nordrhein-Westfalen zum Ende des Jahres 2018 wurden auch für das Wasserhaltungssystem, welches zur Trockenhaltung der Bergwerke eingerichtet wurde, Veränderungen in Gang gesetzt. Zielrichtung der planerischen Umsetzung ist in erster Linie die Zusammenfassung von Grubenwasserprovinzen im Ruhrrevier mit untertägiger Durchleitung der Grubenwässer im Hinblick auf die Entlastung der aufnehmenden Gewässer, insbesondere der Emscher. Die Zielgrubenwasserstände werden vor allem unter der Prämisse des Schutzes der Tagesoberfläche (Bodenbewegungen, Gasaustritte) gewählt und um einen ausreichenden Sicherheitsabstand zu den für die Trinkwasserversorgung und weitere Grundwassernutzungen (z. B. Getränkeindustrie) relevanten Grundwasserkörpern zu erhalten.

Mit einer Vereinbarung zwischen den zuständigen Ministerien und der RAG Aktiengesellschaft (RAG AG) war die Errichtung und Durchführung eines Integralen Monitorings für den Grubenwasseranstieg im Steinkohlenbergbau in Nordrhein-Westfalen beschlossen worden. Als Ergebnis einer Reihe von Vorgesprächen hat sich mit der ersten Sitzung der landesweiten Entscheidungsgruppe das Integrale Monitoring für den Grubenwasseranstieg in Nordrhein-Westfalen im August 2020 konstituiert.

Für das Jahr 2020 wurde zunächst ein Statusbericht erstellt, da sich das Integrale Monitoring noch im Aufbau befand. Der erste Jahresbericht wurde für das Jahr 2021 vorgelegt. Dieser enthielt zwar schon die endgültige Struktur, war an einigen Stellen aber noch mit Inhalten zu füllen. Ebenso wie mit dem Jahresbericht des Vorjahres wird diese Entwicklung mit dem nun vorliegenden Jahresbericht für das Jahr 2024 weiter fortgesetzt. Der Jahresbericht ist, wie der gesamte Monitoringprozess, dynamisch und wird daher immer wieder an die aktuelle Entwicklung angepasst werden.

Der Jahresbericht soll die Aktivitäten im Zusammenhang mit dem Integralen Monitoring für den Grubenwasseranstieg im Berichtsjahr sowie Ergebnisse des operativen Monitorings darstellen und bewerten. Er soll und kann nicht alle Grundlagen und Hintergrundinformationen enthalten und erläutern, was aufgrund des komplexen Systems den Rahmen dieses Berichts übersteigen würde. Alle Projektunterlagen sowie auch weiterführende Informationen sind über das Projektinformationssystem abrufbar.

Das darüber hinaus bestehende Projekthandbuch wird im laufenden Monitoringprozess ständig unter Mitwirkung aller Beteiligten fortgeschrieben und so der Prozesscharakter des Monitorings dokumentiert. Die in den Konzeptgruppen erarbeiteten Methoden der einzelnen Arbeitsfelder werden ausführlich im Projekthandbuch dargelegt.

Für die offene und engagierte Mitarbeit der vielen am Monitoring beteiligten Personen und Institutionen sei hiermit gedankt.

September 2025

Inhaltsverzeichnis

1	Projektbeschreibung	1
1.1	Ziele und Aufgaben des Integralen Monitorings	1
1.2	Rechtlicher Rahmen	5
1.3	Themenfelder	5
1.4	Projektorganisation	7
1.4.1	Organisationsstruktur	8
1.4.2	Geschäftsgrundlage	10
1.4.3	Berichtswesen, Projektinformationssystem (PiS)	11
2	Übergreifende Bewertungsstrategie des Integralen Monitorings	13
3	Bericht aus den Gremien	16
3.1	Übersicht	16
3.2	Entscheidungsgruppe	17
3.3	Konzeptgruppe Ausgasung	18
3.4	Konzeptgruppe Wasser	18
3.5	Konzeptgruppe Bodenbewegung	19
3.6	Unterarbeitsgruppe Daten	19
3.7	Unterarbeitsgruppe Tiefe Pegel	19
3.8	Regionale Arbeitsgruppe Ibbenbüren (RG 01)	19
3.9	Regionale Arbeitsgruppe West (RG 02)	20
3.10	Regionale Arbeitsgruppe Mitte (RG 03)	21
3.11	Regionale Arbeitsgruppe Ost (RG 04)	22
3.12	Regionale Arbeitsgruppe Ruhr (RG 05)	23
4	Ergebnisse des Monitorings in den Regionen	24
4.1	Regionale Arbeitsgruppe Ibbenbüren (RG 01)	24
4.1.1	Betriebliche Entwicklung	24

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen -

Bericht des Jahres 2024

5	Ausblick für 2025	64
4.5.4	Themenfeld Bodenbewegung	63
4.5.3	Themenfeld Wasser	52
4.5.2	Themenfeld Ausgasung	52
4.5.1	Betriebliche Entwicklung	51
4.5	Regionale Arbeitsgruppe Ruhr (RG 05)	51
4.4.4	Themenfeld Bodenbewegung	51
4.4.3	Themenfeld Wasser	50
4.4.2	Themenfeld Ausgasung	49
4.4.1	Betriebliche Entwicklung	49
4.4	Regionale Arbeitsgruppe Ost (RG 04)	49
4.3.4	Themenfeld Bodenbewegung	48
4.3.3	Themenfeld Wasser	46
4.3.2	Themenfeld Ausgasung	46
4.3.1	Betriebliche Entwicklung	45
4.3	Regionale Arbeitsgruppe Mitte (RG 03)	45
4.2.4	Themenfeld Bodenbewegung	44
4.2.3	Themenfeld Wasser	37
4.2.2	Themenfeld Ausgasung	37
4.2.1	Betriebliche Entwicklung	33
4.2	Regionale Arbeitsgruppe West (RG 02)	33
4.1.4	Themenfeld Bodenbewegung	32
4.1.3	Themenfeld Wasser	27
4.1.2	Themenfeld Ausgasung	26

- Anhang 1 Institutionelle Besetzung der Gremien
- Anhang 2 Fundstellenverzeichnisse (Messstellen, Berichte, Gutachten)
- Anhang 3 Parameterkatalog Tiefe Grundwasserkörper und Grubenwasser
- Anhang 4 Teil A: Analysenergebnisse von eingeleitetem Grubenwasser
- Anhang 4 Teil B: Analysenergebnisse von eingeleitetem Grubenwasser des LANUK NRW

1 Projektbeschreibung

1.1 Ziele und Aufgaben des Integralen Monitorings

Mit der Einstellung des Steinkohlenbergbaus in Nordrhein-Westfalen zum Ende des Jahres 2018 wurden auch für das Wasserhaltungssystem, welches zur Trockenhaltung der Bergwerke eingerichtet wurde, Veränderungen in Gang gesetzt. Hierzu hatte die RAG AG im August 2014 ein "Konzept zur langfristigen Optimierung der Grubenwasserhaltung im Ruhrrevier" vorgelegt (im Folgenden "Grubenwasserkonzept" genannt).

Zielrichtung der planerischen Umsetzung des Grubenwasserkonzepts ist in erster Linie die Zusammenfassung von Grubenwasserprovinzen im Ruhrrevier mit untertägiger Durchleitung der Grubenwässer im Hinblick auf die Entlastung der aufnehmenden Gewässer, insbesondere der Emscher. Die Zielgrubenwasserstände werden vor allem unter der Prämisse *der zentralen Schutzziele* gewählt.

Diese sind die Vermeidung der Risiken durch

- den Eintrag von Grubenwasser in nutzbare Grund-/Trinkwasservorkommen,
- nachteilige Veränderungen der Oberflächengewässer und damit verbundener Schutzgebiete durch die Einleitung von Grubenwasser,
- diffuse Ausgasungen (insbesondere von Methan) an der Tagesoberfläche,
- schadensrelevante Hebungen der Tagesoberfläche,
- schadensrelevante anstiegsbedingte Erderschütterungen und
- den Eintritt von Tagesbrüchen.

Grubenwasseranstiege oder -stände, bei denen gemeinschädliche Auswirkungen zu erwarten wären oder die den Schutz von Trink- und Grundwasser gefährden, sind zu vermeiden (siehe auch Landtag NRW, 17. Wahlperiode, Drucksache 17/7698).

Die zentralen Optimierungsmaßnahmen im Grubenwasserkonzept sind:

Neuordnung der Zentralwasserhaltungsprovinzen durch Stilllegung und Zusammenlegung einzelner Zentraler Wasserhaltungen,

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen - Bericht des Jahres 2024

- Anheben der Pumpniveaus und
- Umbau von Grubenwasserhaltungen zu Brunnenbetrieben.

Umsetzung in den Grubenwasserprovinzen im Ruhrgebiet

Hierzu sollen langfristig die Wässer der ehemaligen Bergwerke im westlichen Ruhrgebiet sowie der ehemaligen Wasserhaltung Concordia im mittleren Ruhrrevier am Standort Walsum (Annahmeniveau - 746 m NHN) gehoben und in den Rhein geleitet werden (Bild 1, gelber Bereich). Für das mittlere Ruhrrevier ist nach Einstellung der Wasserhaltungen Fürst Leopold und Auguste Victoria sowie nach der Beendigung der Grubenwasserhebung auf dem ehemaligen Bergwerk Prosper Haniel die sukzessive Stilllegung der Zentralen Wasserhaltungen Amalie, Carolinenglück und Zollverein vorgesehen. Die Grubenwässer der Standorte Amalie, Auguste Victoria, Carolinenglück, Fürst Leopold, Prosper Haniel und Zollverein sollen dann über den Standort Lohberg (geplantes Annahmeniveau - 630 m NHN) ab ca. 2030 in den Rhein eingeleitet werden (Bild 1, grüner Bereich).

Im östlichen Ruhrrevier sollen die am Standort Haus Aden (zugelassenes Annahmeniveau - 600 m NHN bzw. optimiertes Annahmeniveau ca. - 380 m NHN) gehobenen Grubenwässer weiter in die Lippe eingeleitet werden. Die drei zentralen Wasserhaltungen an der Ruhr – Heinrich (Annahmeniveau - 480 m NHN), Friedlicher Nachbar (Annahmeniveau - 175 m NHN) und Robert Müser (Annahmeniveau - 445 m NHN) sollen weiter betrieben werden.

Im Ergebnis sollen im Ruhrrevier in den Wasserprovinzen West, Mitte, Ost und Ruhr sechs funktionell und hydraulisch voneinander unabhängige Wasserhaltungsbereiche entstehen. Details sind unter anderem dem "Hintergrundpapier Steinkohle" des MUNV (siehe https://www.flussgebiete.nrw.de/system/files/atoms/files/2022-02-11 final hgp steinkohle.pdf) zu entnehmen. Je nach Ergebnis der Beobachtungen im Rahmen des Monitorings kann eine Anpassung des anzustrebenden Pumpniveaus im Ruhrrevier gegenüber den ursprünglichen Planungen des Grubenwasserkonzepts notwendig werden (zu den Zielniveaus der einzelnen Wasserprovinzen siehe Kapitel 4). Der Grubenwasseranstieg in den Wasserprovinzen Königsborn und Wasserprovinz Westfalen ist bereits abgeschlossen (Bild 10). Ein Monitoring dieser Wasserprovinzen außerhalb der Zentralwasserhaltungen ist daher nicht Bestandteil des Integralen Monitorings.

Umsetzung im Ibbenbürener Revier

Am Standort Ibbenbüren gliedert sich die Wasserhaltung in das Ost- und das Westfeld. Im Westfeld ist das Grubenwasser bereits seit Jahren auf das geplante Endniveau (+ 63 m NHN) angestiegen und kann aufgrund der topographischen Verhältnisse ohne Pumpbetrieb über den Dickenberger Stollen aus dem Bergwerk abfließen (Bild 1, brauner Bereich). Das Grubenwasser wird über den Stollenbach der Kläranlage Gravenhorst zugeleitet, dort enteisent und in die Ibbenbürener Aa eingeleitet. Im Ostfeld hat der Grubenwasseranstieg im Juni 2020 begonnen. Das Grubenwasser soll auf dasselbe Niveau wie im Westfeld (+ 63 m NHN) ansteigen und dann in freiem Ablauf durch einen Grubenwasserkanal über eine Kläranlage ebenfalls in die Ibbenbürener Aa eingeleitet werden.

Übersicht (Ruhrrevier und Ibbenbüren)

Mit der Umsetzung des Grubenwasserkonzepts der RAG AG werden daher fünf Wasserprovinzen entstehen, die in der *Tabelle 1 und in Bild 1* dargestellt sind. Eine Übersicht über die Wasserhaltungs- und Lotungsstandorte in den Bereichen des Integralen Monitorings im Ruhrrevier liefern die *Bilder 10 und 11*.

Tabelle 1 - Künftige Wasserprovinzen und Wasserhaltungsstandorte

Wasserprovinz	Wasserhaltungsstandort		
West	Walsum		
Mitte	Lohberg		
Ost	Haus Aden		
Ruhr	Heinrich, Friedlicher Nachbar, Robert Müse		
Ibbenbüren	lbbenbüren		

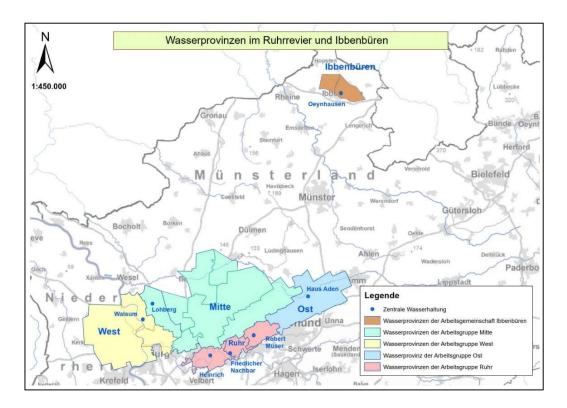


Bild 1 - Wasserprovinzen im Ruhrrevier und Ibbenbüren

Spätestens seit der Vorlage des Grubenwasserkonzepts hat sich eine breite öffentliche Diskussion um den Grubenwasseranstieg, die Kontrollierbarkeit und die möglichen Auswirkungen entwickelt.

Hierauf setzen die folgenden übergeordneten Projektziele des Integralen Grubenwasseranstiegsmonitorings (IM) auf:

- · Validierung der Grundannahmen,
- Steuerung des Vorhabens,
- Information der (Fach-)Öffentlichkeit,
- Transparenz der Verfahren und
- Steigerung der Akzeptanz.

Mit der Validierung der Grundannahmen im Sinne dieses Projektes (IM) ist gemeint, dass im Rahmen des Monitorings festgestellt werden soll, ob die grundlegenden Aussagen, welche die

Basis für das Grubenwasserkonzept bildeten, hinsichtlich der sich nach Umsetzung dieses Konzepts entwickelnden Fließrichtungen und Grubenwasserpegel in den jeweiligen Grubenwasserteilprovinzen, weiterhin Gültigkeit haben bzw. einer Anpassung bedürfen.

1.2 Rechtlicher Rahmen

Bezüglich der räumlichen und inhaltlichen Abgrenzung der Abschlussbetriebsplanverfahren (ABP-Verfahren) und der wasserrechtlichen Erlaubnisverfahren wird auf die Ausführungen der Berichte der nordrhein-westfälischen Landesregierung an den Unterausschuss Bergbausicherheit vom 26.09.2018 und 15.09.2021 verwiesen (LT-Drucksachen 17/1163 und 17/5708; siehe https://www.grubenwasser-steinkohle-nrw.de/berichte-gutachten - "Übersichten").

1.3 Themenfelder

In aktuellen Zulassungen von bergrechtlichen Abschlussbetriebsplänen sowie in wasserrechtlichen Erlaubnissen zum Heben und Einleiten von Grubenwasser sind für die einzelnen Wasserhaltungen bereits eine Reihe von Monitoringmaßnahmen festgeschrieben. Im Rahmen der Bergaufsicht nach §§ 69 ff. Bundesberggesetz (BBergG) bzw. §§ 100, 101 Wasserhaushaltsgesetz (WHG) finden regelmäßig Kontrollen durch Befahrungen der Betriebsstätten sowie Prüfung von Berichten statt, die auf der Grundlage der Nebenbestimmungen der Zulassungsbescheide vorzulegen sind. Im Falle von festgestellten Abweichungen wird bei Bedarf über die Anordnung weiterer Maßnahmen entschieden.

Hierauf setzt das Integrale Monitoring auf, das sich von der singulären Überwachung der einzelnen Standorte der heutigen Wasserhaltungen löst und so letztendlich alle künftigen Wasserprovinzen (vgl. *Tabelle 1*) übergreifend in den Blick nimmt. Die Messergebnisse des bisherigen Monitorings fließen dann in den kontinuierlichen Prozess des Integralen Monitorings ein.

In den Bereichen des Berg- und Wasserrechts finden sich eine Reihe von Themenfeldern, die für eine Bearbeitung in einem Monitoringprozess sachlich gegliedert und konkretisiert wurden. Daraus ergeben sich im ersten Ansatz die drei Themenfelder Ausgasung, Wasser und Bodenbewegung, deren Teilbereiche in *Tabelle 2* aufgeschlüsselt werden.

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen - Bericht des Jahres 2024

Tabelle 2 - Thematische Abgrenzung im Monitoring

Ausgasung	Wasser	Bodenbewegung
Migration/Freisetzung von Grubengas (Methan)	Entwicklung des Grubenwasser- pegels	Hebungen der Tagesoberfläche
Migration/Freisetzung sonstiger Gase	Grubenwasserqualität und -mengen im Vergleich zur ABP- Prognose	Erderschütterungen
	Grubenwasserqualität und -mengen betreffend Einleitungen in die aufnehmenden Gewässer (Auswirkungen auf die aufnehmenden Gewässer, Einhaltung der Bewirtschaftungsziele)	Unstetigkeiten an der Tagesober- fläche
	Umweltverträglichkeit bezüglich der Schutzgebiete am Oberflä- chengewässer unterhalb der Ein- leitstelle	Tagesbrüche durch Füllsäulenab- gänge bei nicht dauerstandsicher verfüllten Schächten
	Auswirkungen auf den Grund- wasserkörper im Bereich des aufnehmenden Oberflächenge- wässers	
	Abstand Grubenwasserpegel zu nutzbaren Grundwasservorkom- men	
	Einfluss auf Brunnenanlagen	
	Mengenmäßige und chemische Auswirkungen auf das Grund- wasser einschließlich der tiefen Grundwasserleiter	
	Auswirkungen auf Flurabstände	

1.4 Projektorganisation

Mit ersten Vorüberlegungen, wie ein Integrales Monitoring für den Grubenwasseranstieg aussehen könnte, wurde bereits im Januar 2019 begonnen. Auf der Grundlage der Erfahrungen mit den Monitoringprozessen im Zusammenhang mit den Rahmenbetriebsplänen der ehemaligen Steinkohlenbergwerke sowie im Bereich des Braunkohlenbergbaus in Nordrhein-Westfalen wurden mit Fachexperten aus Industrie, Verwaltung und Ingenieurbüros die Grundgedanken für das Integrale Monitoring entwickelt und die Aufgaben für den Aufbau und die Organisation des Projekts identifiziert.

Auf der Grundlage dieser Erkenntnisse wurde ein erster Entwurf für die Konzeptbeschreibung entwickelt, welcher zunächst mit der Landesregierung sowie der RAG AG als betroffenes Unternehmen diskutiert wurde. Als Ergebnis wurde in einer Vereinbarung im Februar 2020 zwischen dem Ministerium für Wirtschaft, Industrie, Klimaschutz und Energie des Landes Nordrhein-Westfalen (MWIKE; vormals zum Zeitpunkt der Entscheidung MWIDE), dem Ministerium für Umwelt, Naturschutz und Verkehr des Landes Nordrhein-Westfalen (MUNV; vormals zum Zeitpunkt der Entscheidung MULNV) und der RAG AG die Errichtung und Durchführung eines Integralen Monitorings für den Grubenwasseranstieg im Steinkohlenbergbau in Nordrhein-Westfalen beschlossen.

Als Beteiligte am Monitoring sind neben der Abteilung Bergbau und Energie in NRW der Bezirksregierung Arnsberg (BRA, Abt. 6) als zuständige Genehmigungs- und Aufsichtsbehörde und den fachaufsichtlich zuständigen Ministerien (MWIKE als oberste Bergbehörde und MUNV als oberste Wasser- und Naturschutzbehörde), der Geologische Dienst NRW (GD NRW), das Landesamt für Natur, Umwelt und Klima Nordrhein-Westfalen (LANUK, vormals Landesamt für Natur-, Umwelt- und Verbraucherschutz NRW - LANUV), die RAG AG als Unternehmerin, die lokal zuständigen Bezirksregierungen, die Bezirksregierung Köln, Abt. 7 Geobasis NRW, die betroffenen Kommunen, die Umweltschutzbehörden (Kreise und kreisfreie Städte), der Regionalverband Ruhr, Wasserversorger, Wasserverbände, die Landwirtschaftskammer NRW, Naturschutzverbände, Interessenvertreter Bergbaubetroffener und Bergbau-Altgesellschaften zu nennen. So wird sichergestellt, dass der Monitoringprozess eine weitreichende Beteiligung erhält sowie Mitwirkungsmöglichkeiten eröffnet werden und zu den Inhalten und Ergebnissen eine große Transparenz erzeugt wird.

1.4.1 Organisationsstruktur

Die Organisationsstruktur für das Projekt besteht aus der landesweiten Entscheidungsgruppe (EG), drei thematischen Konzeptgruppen (KG) sowie fünf Regionalen Arbeitsgruppen (RG). Für spezielle Themen oder Fragestellungen können temporäre Unterarbeitsgruppen eingerichtet werden. Der organisatorische Aufbau der Gremien des Integralen Monitorings ist in *Bild 2* dargestellt.

Die landesweite **Entscheidungsgruppe** ist das Entscheidungsgremium des Integralen Monitorings. Sie bewertet und entscheidet über aufbau- und ablauforganisatorische Fragen (planerischorganisatorisch). Die Entscheidungsgruppe kann Empfehlungen zur Umsetzung des bergrechtlichen Monitorings an die Genehmigungsbehörde, welche die entsprechenden Betriebsplanverfahren auf den Weg bringt, aussprechen. Die dort getroffenen Vereinbarungen und Ergebnisse werden im Projekthandbuch dokumentiert. Die Entscheidungsgruppe trifft ihre Entscheidungen in der Regel auf Basis von Berichten aus den Konzeptgruppen und den Regionalen Arbeitsgruppen durch Beschlüsse in den Sitzungen bzw. durch dort vereinbarte Umlaufabstimmungen. Durch diese Beschlüsse können den betroffenen Inhalten entsprechend Arbeitsaufträge an die Konzeptgruppen bzw. Regionalen Arbeitsgruppen (s. u.) erteilt werden. Getagt wird halbjährlich oder nach Bedarf; Mitglieder sind Vertreter der am Monitoring mitwirkenden Organisationen.

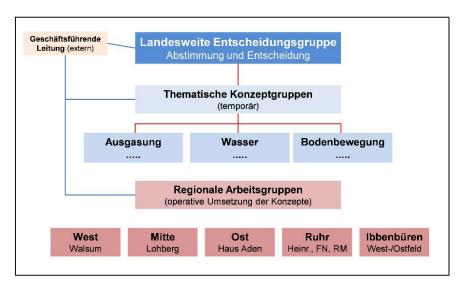


Bild 2 - Organisatorischer Aufbau des Integralen Monitorings (Quelle: BRA, Abt. 6)

Entsprechend den zu bearbeitenden Arbeitsfeldern wurden aus dem Teilnehmerkreis der Entscheidungsgruppe heraus **Konzeptgruppen** eingerichtet, die die methodischen Grundlagen zur

Durchführung der einzelnen Untersuchungen und zur Auswertung der Ergebnisse erarbeiten. Auf dieser Basis soll dann in den Regionalen Arbeitsgruppen das Monitoring durchgeführt werden. Grundsätzlich müssen in den Konzeptgruppen die jeweiligen Informationsbedürfnisse, Datenanforderungen und Ziele ermittelt werden. Die Grundsätze für das Monitoring und die wissenschaftlichen Grundlagen sind hier zu erarbeiten und im Projekthandbuch zu dokumentieren.

Wegen der Vielfalt der Themen, vergleiche **Tabelle 2**, sind diese Grundsätze in Steckbriefen niedergelegt worden. Die Ergebnisse der Regionalen Arbeitsgruppen sind zusammenzufassen und zu bewerten.

Die Konzeptgruppen treffen ihre Entscheidungen in der Regel auf Basis der Berichte über Arbeitsergebnisse der Konzeptgruppenmitglieder bzw. von Berichten aus den Regionalen Arbeitsgruppen durch Beschlüsse in den Sitzungen bzw. durch dort vereinbarte Umlaufabstimmungen. Durch diese Beschlüsse können entsprechend der betroffenen Inhalte Arbeitsaufträge an die Regionalen Arbeitsgruppen (s. u.) erteilt oder Anfragen zur übergeordneten Klärung an die Entscheidungsgruppe gerichtet werden.

In der Startphase des Monitorings sind die drei Konzeptgruppen "Ausgasung", "Wasser" und "Bodenbewegung" eingerichtet worden, welche zunächst mehrmals jährlich tagten. Die Arbeit dieser Konzeptgruppen ist bereits weitestgehend abgeschlossen, siehe hierzu Kap. 3.3 bis 3.5.

Aus den Konzeptgruppen heraus wurden zur Abklärung spezieller Fragen die Unterarbeitsgruppen "Daten" und "Tiefe Pegel" eingerichtet, deren Arbeitsaufträge zwischenzeitlich ebenfalls weitestgehend erledigt sind (siehe hierzu Kap. 3.6 und 3.7).

Die Aufteilung in **Regionale Arbeitsgruppen** orientiert sich an den verbleibenden Wasserprovinzen West, Mitte, Ost, Ruhr und Ibbenbüren. Ihnen obliegt die operative Umsetzung der in den Konzeptgruppen erarbeiteten methodischen Grundlagen, welche in den Steckbriefen bzw. Verfahrensanweisungen etc. niedergelegt sind. Bezogen auf die dort beschriebenen Datenerfordernisse und Regeln zur Methodik und Auswertung identifizieren und beschreiben die Regionalen Arbeitsgruppen die hierfür erforderlichen Messstellen, Berichte bzw. Gutachten und ordnen sie den Steckbriefen zu. Sofern erforderlich, werden zur näheren Auslegung und Interpretation der Vorgaben Steckbriefkonkretisierungen erstellt. Die Aus- und Bewertung sowie die Ergreifung von Maßnahmen mit den zugehörigen Rollenverteilungen ergeben sich aus diesen Dokumenten in Verbindung mit den in Kap. 2 dargelegten Grundsätzen.

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen - Bericht des Jahres 2024

Die Regionalen Arbeitsgruppen treffen ihre Entscheidungen in der Regel auf Basis der Berichte über Arbeitsergebnisse der Mitglieder der jeweiligen Regionalen Arbeitsgruppe bzw. den Vorgaben/Arbeitsaufträgen der Konzeptgruppen bzw. der Entscheidungsgruppe durch Beschlüsse in den Sitzungen bzw. durch dort vereinbarte Umlaufabstimmungen. Durch diese Beschlüsse können auf Grundlage der betroffenen Inhalte Anfragen zur übergeordneten Klärung an die Konzeptgruppen bzw. die Entscheidungsgruppe gerichtet werden. Alle fünf Regionalen Arbeitsgruppen tagen etwa zweimal pro Jahr. Der Stand der Arbeiten ist in Kap. 3.8 bis 3.12 beschrieben.

Mögliche Teilnehmer sind die Bergbehörde, die lokal zuständigen Bezirksregierungen, das MUNV, das LANUK, die Kreise und kreisfreien Städte, die Kommunen, der örtliche Naturschutz, die regionalen Landwirtschaftskammern, die Interessenvertretungen der Bergbaubetroffenen, die Bergbau-Altgesellschaften und die RAG AG. Je nach regionaler Besonderheit können noch weitere Institutionen und Interessensvertreter wie beispielsweise sondergesetzliche Wasserverbände oder Wasserversorger teilnehmen. Die aktuelle institutionelle Besetzung der einzelnen Gremien ist in *Anhang 1* dargestellt.

Die **geschäftsführende Leitung** betrifft im Wesentlichen das übergreifende Projektmanagement, die Vor- und Nachbereitung aller Sitzungen und das Erstellen und Führen des Projekthandbuches anhand eingehender Beiträge. Die Entwicklung, der Betrieb und die Pflege eines Projektinformationssystems (PiS) zählen ebenfalls zu den zentralen Aufgaben. Diese Aufgabe wird als Dienstleistung einer externen Stelle übertragen. Derzeit ist dies das Ingenieurbüro Heitfeld-Schetelig GmbH (IHS) aus Aachen. Die BRA, Abt. 6, hat eine koordinierende Funktion als Bindeglied zwischen den o. a. Gremien und der geschäftsführenden Leitung inne.

Die Kosten der externen Dienstleistung zur Koordination des Monitorings werden, gemäß der Vereinbarung im Februar 2020 zwischen MWIKE, MUNV und RAG AG als Verfahrenskosten von der RAG AG getragen. Die externe Dienstleistung zur externen Koordination des Monitorings wird jeweils für zwei Jahre, mit je einem Jahr Verlängerungsoption durch das Land NRW ausgeschrieben und vergeben.

1.4.2 Geschäftsgrundlage

Auf der ersten Besprechung der landesweiten Entscheidungsgruppe am 25.08.2020 wurde vereinbart, dass alle Beteiligten gleichberechtigt arbeiten und eine gemeinsame Lösung der Aufgabe

des Monitorings angestrebt wird. Die wesentlichen inhaltlichen und organisatorischen Grundlagen, auf die sich die Entscheidungsgruppe Monitoring einigt, werden im Projekthandbuch als gemeinsame Geschäftsgrundlage zusammenfassend dokumentiert und bei Bedarf aktualisiert. Das Projekthandbuch liegt derzeit in der Ausgabe 1 (Stand 24.05.2024) vor.

1.4.3 Berichtswesen, Projektinformationssystem (PiS)

Begleitend zum Integralen Monitoring wurde ein Berichtswesen aufgebaut. Alle Monitoringdokumente werden dargestellt und dokumentiert. Neben dem Projekthandbuch, das einer ständigen Fortschreibung unterliegt, gibt es für das laufende Monitoring folgende Dokumente:

- Protokolle der Entscheidungsgruppensitzung
- Protokolle der Konzeptgruppen sowie Unterarbeitsgruppen und der Regionalen Arbeitsgruppen
- Jahresberichte
- Steckbriefe und Steckbriefkonkretisierungen
- Messberichte und Gutachten
- Grundlagendaten (z. B. behördliche Zulassungen und weitere Hintergrundinformationen)

Das Projektinformationssystem, welches als internetbasiertes Portal die Informationen sowohl den Mitgliedern der Gremien des Integralen Monitorings, als auch der Öffentlichkeit zugänglich macht, ist seit Anfang 2021 unter der Internetadresse https://www.grubenwasser-steinkohle-nrw.de in Betrieb. Das Portal wird ständig fortgeschrieben und ergänzt.

Insbesondere sind die im Folgenden aufgelisteten Unterlagen allesamt im PiS abgelegt. Dies sind die wichtigsten Dokumente, die zum Verständnis des komplexen Monitorings dienen können. Antworten auf viele Fragestellungen, die im Zusammenhang mit dem Monitoring auftreten, können hier gefunden werden. Ebenso findet eine Präzisierung bestimmter Sachverhalte statt:

- Konzeptbeschreibung: Integrales Monitoring für den Grubenwasseranstieg im Steinkohlenbergbau in Nordrhein-Westfalen
- Projekthandbuch
- Grubenwasserkonzept der RAG AG
- ABP-Zulassungen, nicht abschließend
- Wasserrechtliche Erlaubnisse

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen -

Bericht des Jahres 2024

- Hintergrundpapier Steinkohle
- Landtagsberichte
- Machbarkeitsstudie Lohberg

Bei extern verfügbaren Messdaten bzw. Berichten und Gutachten enthält das PiS einen Verweis auf die entsprechenden Quellen und verzichtet im Wesentlichen auf die Ablage redundanter Informationen. Dazu enthält das PiS auch Links auf weitere Internetportale, die als Hintergrundinformationen dienlich sein können. Soweit keine Verweise zu externen Datenquellen möglich sind, werden diese Dokumente entsprechend ihrer thematischen und örtlichen Zuordnung der Inhalte an geeigneter Stelle im PiS abgelegt.

Alle Messdaten, die im Zusammenhang mit dem Integralen Monitoring für den Bereich der Wasserwirtschaft erhoben bzw. ausgewertet werden, sollen zudem über das Elektronische Wasserwirtschaftliche Verbundsystem (ELWAS-WEB) öffentlich zugänglich gemacht werden.

Neben dem für jedermann zugänglichen öffentlichen Teil hat das PiS auch einen nichtöffentlichen, "Internen Bereich", der nur den Mitgliedern der Gremien des Integralen Monitorings mittels Login zugänglich ist. Hier sind bisher im Wesentlichen Kontaktdaten der in den verschiedenen Arbeitsgruppen des Integralen Monitorings tätigen Personen hinterlegt.

Vom Grundsatz her werden, soweit möglich und rechtlich zulässig, Ergebnisse des Monitorings im öffentlichen Teil des PiS zugänglich gemacht. Hiervon ausgenommen können Informationen und auch Messergebnisse sein, welche insbesondere aus Gründen des Schutzes persönlicher Daten (z. B. bei konkretem Bezug auf ein Privatgrundstück) nicht ohne ausdrückliche Zustimmung der Betroffenen veröffentlicht werden dürfen.

Das Portal wird ständig fortgeschrieben und ergänzt. Struktur und Aufbau des PiS sind im Projekthandbuch dargestellt.

2 Übergreifende Bewertungsstrategie des Integralen Monitorings

Durch das Integrale Monitoring werden die drei Themenfelder Ausgasung, Wasser und Bodenbewegung abgedeckt, deren Themenbereiche in *Tabelle 2* näher aufgeschlüsselt sind.

Die Themenfelder stehen vielfach in einem engen inhaltlichen und räumlichen Bezug zueinander, so dass einzelne Bobachtungsgrößen für mehrere Themenbereiche von Bedeutung sind. Die Definition von Themenfeldern und die inhaltliche Bearbeitung der Themenfelder erfolgt nach einem für alle Konzeptgruppen standardisierten System, den von der BRA, Abt. 6 entwickelten Steckbriefen. Daher finden sich diverse Beobachtungsgrößen teilweise in mehreren der insgesamt 13 Steckbriefe zur einheitlichen Durchführung des operativen Monitorings wieder (vgl. Kap. 3.2 bis 3.4). Hierdurch ist auch ein intensiver Austausch von Ergebnissen und Erkenntnissen zwischen den einzelnen Themenfeldern begründet.

Um sicherzustellen, dass unplanmäßige Auswirkungen des Grubenwasseranstiegs im Zuge der Umsetzung des Grubenwasserkonzepts frühzeitig erkannt werden, ist die eindeutige fachliche Auswertung und Bewertung der Monitoringergebnisse notwendig.

Im Rahmen des Monitorings des Grubenwasseranstiegs fallen eine Fülle unterschiedlicher Arten von Daten an. Die Daten, welche für das Monitoring erforderlich sind, und deren Herkunft werden in den Steckbriefen benannt. Abgespeichert und der Öffentlichkeit bzw. den am Monitoring Beteiligten zur Verfügung gestellt, werden die (wasserwirtschaftlichen) Daten in ELWAS-WEB. Dabei ist zu berücksichtigen, dass die Monitoringergebnisse unterschiedlich schnelle Entwicklungen abbilden und in einem Gesamtzusammenhang stehen. Der Erkennung der Veränderungen, welche durch den Grubenwasseranstieg bedingt sind, kommt dabei besondere Bedeutung zu.

Dem Monitoring liegt die Überlegung zugrunde, die komplexe Realität bzw. die Fülle von Daten aus den einzelnen Themenfeldern zu relativ wenigen, überschaubaren Kenngrößen, so genannten Indikatoren, zu verdichten. Dabei kann zwischen Indikatoren, welche rasch auf Veränderungen reagieren und zur Früherkennung dienen, und solchen, welche eher längerfristig und groß-

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen - Bericht des Jahres 2024

räumig reagieren, differenziert werden. Entsprechend des jeweiligen Themenfelds sind die Indikatoren in den Steckbriefen beschrieben und werden ggf. durch Steckbriefkonkretisierungen weiter vertieft.

Alle Indikatoren dienen der Erkennung von Zielabweichungen, der übergreifenden Bewertung und Plausibilitätsprüfung. Die Indikatoren, für welche Zielabweichungen definiert werden können, lassen sich in ein integriertes System zur Bewertung einordnen. Gegebenenfalls muss zur Berücksichtigung örtlicher Besonderheiten regional unterschieden werden, was durch Steckbriefkonkretisierungen umgesetzt wird.

Das System zur Bewertung gliedert sich in drei Zustandskategorien, welche in den oben erwähnten Steckbriefen sowie einem Vermerk zu den Anforderungen nach OGewV und GrwV bei der Konkretisierung der Steckbriefe themenspezifisch ausgelegt und spezialisiert werden (*Tabelle 3*).

Die Aufgabenverteilung im laufenden Monitoringprozess wird in den Steckbriefen, dort in Kap. 5, dargelegt. In den Regionalen Arbeitsgruppen werden die Auswertungen und Trendanalysen zu den erhobenen Daten (Messergebnisse, Messberichte) auf regionaler Ebene fachlich bewertet und in das oben erläuterte Bewertungssystem unter Anwendung der jeweils einschlägigen Steckbriefe, Steckbriefkonkretisierungen sowie Verfahrensanweisungen etc. eingeordnet. Hierbei werden gegebenenfalls Überschreitungen von den jeweils festgelegten Warn- und Alarmwerten festgestellt, die Beurteilungen verifiziert und im Zusammenhang mit allen Ergebnissen übergreifend bewertet.

Der Bewertung von auffälligen Werten und Verschlechterungen gegenüber den Prognosen und einer frühzeitigen Klärung der Ursachen, insbesondere hinsichtlich des ursächlichen Zusammenhangs mit dem Grubenwasseranstieg, kommt dabei eine besondere Bedeutung zu.

Die Überschreitung von Alarmwerten wird von der jeweiligen Regionalen Arbeitsgruppe zunächst als eine Zielabweichung eingestuft. Eine Zielverletzung liegt dann vor, wenn die Zielabweichung im ursächlichen Zusammenhang mit dem Grubenwasseranstieg steht. Hierbei sind die Regelungsinhalte der für die jeweiligen Standorte der ehemaligen Bergwerke bzw. der Zentralen Wasserhaltungsstandorte der RAG AG geltenden Abschlussbetriebsplanzulassungen und für das Grubenwasser erteilten wasserrechtlichen Erlaubnisse zu berücksichtigen. Wird eine Zielabweichung als Zielverletzung eingestuft, so gibt die Regionalgruppe eine Empfehlung von Maßnahmen an die Aufsichtsbehörde ab.

Sofern sich hierbei Ergebnisse zeigen, die über den jeweiligen Regionalbereich hinaus von Bedeutung sein können, so wird hierüber von der jeweiligen Regionalgruppe an die Entscheidungsgruppe bzw. die Konzeptgruppen berichtet. Die Entscheidungsgruppe hat hierbei vorrangig eine koordinierende Funktion gegenüber den Regionalgruppen, während die Konzeptgruppen entsprechend ihrer jeweiligen thematischen Aufgabenstellung tätig werden, wenn fachliche bzw. methodische Fragen regional übergreifend im Hinblick auf eine einheitliche Bewertung zu beantworten sind.

Tabelle 3 – Bewertungssystem (Quelle: BRA, Abl. 6)

Normal	Der Zustand "Normal" ist durch die Einhaltung der Werte gekennzeichnet, die im Rahmen der Prognosen für die Auswirkungen des Grubenwasseranstiegs liegen bzw. vorgegebene Grenz- oder Orientierungswerte einhalten und daher als unauffällig einzuschätzen sind. Diese Werte liegen unterhalb der Warnwerte. Eine Fortführung der Beobachtungen im Rahmen des regulären Monitorings ist angezeigt.
Warnung	Der Zustand "Warnung" ist durch auffällige Werte gekennzeichnet, die oberhalb des Zustands "Normal" und unterhalb des Zustands "Alarm" liegen und bei lokaler Häufung bzw. Verstärkung in der Tendenz Anhaltspunkte für eine Verschlechterung gegenüber den Prognosen für die Auswirkungen des Grubenwasseranstiegs geben bzw. Konflikte mit vorgegebenen Grenz- oder Orientierungswerte auslösen können. Hier muss gezielt und intensiv beobachtet werden. Insbesondere muss vertiefend untersucht werden, ob die Abweichungen durch den Grubenwasseranstieg induziert sind. Sofern ein ursächlicher Zusammenhang besteht, müssen Maßnahmen ergriffen werden, welche für eine weitere Beobachtung geeignet sind und mögliche Schritte des Bergbauunternehmers für das Gegensteuern bei Anhalten des negativen Trends darlegen. Die Maßnahmen werden erörtert und bewertet.
Alarm	Der Zustand "Alarm" ist durch auffällige Werte gekennzeichnet, welche eine Verschlechterung gegenüber den Prognosen für die Auswirkungen des Grubenwasseranstiegs bzw. Konflikte mit vorgegebenen Grenz- oder Orientierungswerte im Sinne einer Zielabweichung bzw. Zielverletzung darstellen. Sofern ein ursächlicher Zusammenhang mit dem Grubenwasseranstieg besteht, müssen die vom Bergbauunternehmer geplanten Maßnahmen zum Gegensteuern umgesetzt und auf Basis seines Berichts über die Umsetzung der Maßnahmen auf ihre Wirksamkeit gezielt intensiv überprüft werden. Eine Intensivierung der Beobachtungen ist dabei unerlässlich. Der Erfolg der Maßnahmen ist in regelmäßigen Abständen zu überprüfen. Ggf. werden Maßnahmen im Rahmen der behördlichen Aufsicht angeordnet.

3 Bericht aus den Gremien

3.1 Übersicht

Die wesentliche Grundlagenarbeit erfolgte in fünfzehn Sitzungen der Konzeptgruppen. Die Arbeit aller Regionalen Arbeitsgruppen wurde inzwischen aufgenommen. Eine Gesamtübersicht aller durchgeführten Sitzungen ist nachfolgend in *Tabelle 4* dargestellt.

Tabelle 4 - Gesamtübersicht aller in 2020 bis 2024 durchgeführten Sitzungen

Entschei- dungs- gruppe	К	onzeptgruppe	en	Unterarbeitsgruppen		
grappe	Ausgasung	Wasser	Bodenbe- wegung	Tiefe Pegel	Daten	
25.08.2020	26.11.2020	24.11.2020	26.11.2020			
	22.01.2021	25.01.2021	27.01.2021		24.02.2021	
24.03.2021	12.05.2021	27.05.2021	19.05.2021	06.05.2021	07.05.2021	
04.11.2021	03.09.2021	30.09.2021	22.09.2021	20.08.2021	19.08.2021	
31.05.2022	*	01.07.2022	*	*	*	
30.11.2022	*	26.05.2023	*	*	*	
10.08.2023	*		*	*	*	
24.05.2024	*	19.04.2024	*	24.06.2024	*	

Fortsetzung nächste Seite

Fortsetzung Tabelle 4

Regionale Arbeitsgruppen							
01 lbbenbüren	02 West	03 Mitte	04 Ost	05 Ruhr			
18.12.2020							
16.11.2021	09.11.2021						
04.04.2022	06.04.2022						
24.10.2022	27.10.2022	19.09.2022	15.09.2022	13.09.2022			
18.04.2023	25.04.2023	07.03.2023	14.03.2023	21.03.2023			
10.11.2023	30.11.2023	20.10.2023	26.10.2023	02.11.2023			
02.05.2024	11.04.2024	08.05.2024	18.04.2024	25.04.2024			
10.10.2024	24.10.2024	30.10.2024	28.11.2024	21.11.2024			
* = ruhend gestellt							

3.2 Entscheidungsgruppe

Im Berichtszeitraum hat die Entscheidungsgruppe einmal (24.05.2024) getagt. Die Sitzung wurde als Videokonferenz durchgeführt. Die vorgetragenen Berichte der Konzeptgruppe Wasser sowie der regionalen Arbeitsgruppen wurden zur Kenntnis genommen. Die Berichte des Jahres 2022 und des Jahres 2023 für das Integrale Monitoring wurden verabschiedet mit der Maßgabe, dass für den Jahrgang 2023 noch ein statistischer Anhang zu Analysenergebnissen ergänzt wird. Der aktuelle Stand des Projekthandbuches wurde vorgestellt. Auf Vorschlag der KG Wasser wurde

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen -

Bericht des Jahres 2024

der Reaktivierung der UAG "Tiefe Pegel" zugestimmt. Das weitere Vorgehen und die Terminplanung wurden abgestimmt.

3.3 Konzeptgruppe Ausgasung

Diese Konzeptgruppe wurde wegen Erledigung der Arbeitsaufträge mit der Sitzung am 03.09.2021 ruhend gestellt. Sitzungen fanden im Berichtsjahr 2024 daher nicht statt.

3.4 Konzeptgruppe Wasser

In dieser Konzeptgruppe fand im Berichtszeitraum am 19.04.2024 eine Sitzung als Videokonferenz statt.

Im Berichtszeitraum wurden folgende Arbeitsergebnisse erzielt bzw. Beschlüsse gefasst:

- Vorlage einer Übersichtstabelle zu allen Wasserhaltungsstandorten betreffend Retentionsräumen
- Redaktionelle Anpassung der Steckbriefe an den Entfall des Grubenwasseranstiegs im Bereich Ruhr (Heinrich)
- Prüfung und Verabschiedung der Arbeitsergebnisse zum Gutachten "Tiefe Pegel" (vgl. Kap. 3.7)
- Wiederaufleben der UAG Tiefe Pegel.

Die weitere Begleitung der Umsetzung der Empfehlungen des Gutachtens "Tiefe Pegel" sowie der Aufbau eines numerischen Grundwassermodells soll durch die UAG Tiefe Pegel mit Berichterstattung an die KG Wasser behandelt werden. Die Konzeptgruppe Wasser wird deshalb im Jahr 2025 fortgesetzt (siehe Kap. 5).

3.5 Konzeptgruppe Bodenbewegung

Diese Konzeptgruppe wurde wegen der Erledigung der Arbeitsaufträge mit der Sitzung am 22.09.2021 ruhend gestellt. Sitzungen fanden im Berichtsjahr 2024 daher nicht statt.

3.6 Unterarbeitsgruppe Daten

Diese Unterarbeitsgruppe wurde wegen Erledigung der Arbeitsaufträge mit der Sitzung am 19.08.2021 ruhend gestellt. Sitzungen fanden im Berichtsjahr 2024 daher nicht statt.

3.7 Unterarbeitsgruppe Tiefe Pegel

Aufgrund der Beschlüsse der Entscheidungsgruppe und der Konzeptgruppe Wasser (siehe Kap. 3.2 und 3.4) wurde diese Unterarbeitsgruppe im Berichtsjahr reaktiviert. Es wurde eine Auftaktsitzung am 24.06.2024 als Videokonferenz durchgeführt. Hierin wurden das weitere Vorgehen und die Themenschwerpunkte der UAG Tiefe Pegel festgelegt:

- Begleitung der Umsetzung der Empfehlungen des Gutachtens "Tiefe Pegel"
- Aufbau eines numerischen Grundwassermodells

Je nach Fortgang der Arbeiten werden weitere Sitzungen im Jahr 2025 anberaumt (siehe Kap. 5).

3.8 Regionale Arbeitsgruppe Ibbenbüren (RG 01)

In dieser Regionalen Arbeitsgruppe wurden im Berichtszeitraum zwei Sitzungen als Videokonferenz durchgeführt (am 02.05.2024 und am 10.10.2024). Hierin konnten die folgenden Themen behandelt und Ergebnisse erzielt werden:

- Bericht aus der Entscheidungsgruppensitzung
- Bericht aus der Sitzung der Konzeptgruppe Wasser
- Bericht aus der Sitzung der UAG Tiefe Pegel

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen -

Bericht des Jahres 2024

- Aktuelle Situation des Betriebs
- Aktueller Stand der Genehmigungsverfahren
- Laufende Monitoringmaßnahmen, Stand des Betriebes
- Ergebnisse von Radonmessungen
- Bewertung von Ergebnissen des operativen Monitorings
- Umsetzung der Steckbriefe auf der regionalen Ebene (weiter im Aufbau)
- Identifizierung benötigter Messstellen und Berichte (weiter im Aufbau)

Zu den Monitoringergebnissen wird unter Kap. 4.1 berichtet. Der Bestand von bislang 22 identifizierten Messstellen bzw. Berichte und Gutachten mit den zugehörigen Beschreibungen durch Stammdatenblätter und ggf. zugehörige Steckbriefkonkretisierungen ist unverändert geblieben. Aktualisierungserfordernisse haben sich im Berichtszeitraum nicht ergeben. Zur weiteren Vorbereitung der Aufnahme von Messungen und Erstellung von Messberichten sowie deren Aus- und Bewertung sind noch weitere Messstellen erforderlich, hauptsächlich im Bereich von Grundwassermessstellen im oberflächennahen Bereich. Die Fortsetzung dieser Tätigkeiten inklusive Überführung der derzeit laufenden betrieblichen und behördlichen Maßnahmen des Monitorings, welche sich auf die bisherige Genehmigungslage stützen, in das Konzept des Integralen Monitorings wird daher im Jahr 2025 sukzessive fortschreiten.

3.9 Regionale Arbeitsgruppe West (RG 02)

In dieser Regionalen Arbeitsgruppe wurden im Berichtszeitraum zwei Sitzungen als Videokonferenzen durchgeführt (am 11.04.2024 und am 24.10.2024). Hierin wurden die folgenden Themen behandelt und Ergebnisse erzielt:

- Bericht aus der Entscheidungsgruppensitzung
- Bericht aus der Sitzung der Konzeptgruppe Wasser
- Bericht aus der Sitzung der UAG Tiefe Pegel
- Aktueller Stand der Genehmigungsverfahren
- Laufende Monitoringmaßnahmen, Stand des Betriebes
- Ergebnisse der Messungen des Laborschiffs des LANUK im Umfeld der Einleitstelle
- Bewertung von Ergebnissen des operativen Monitorings

- Umsetzung der Steckbriefe auf der regionalen Ebene (im Aufbau)
- Identifizierung benötigter Messstellen und Berichte (im Aufbau)

Zu den Monitoringergebnissen wird unter Kap. 4.2 berichtet. Es wurden 12 neue Messstellen identifiziert und beschrieben. Der Bestand beläuft sich nun auf insgesamt 37 Messstellen bzw. Berichte und Gutachten mit den zugehörigen Stammdatenblättern und ggf. erforderlichen Steckbriefkonkretisierungen. Eine Aktualisierung zu den bereits bestehenden Messstellen/Berichten war in einem Fall erforderlich. Zur weiteren Vorbereitung der Aufnahme von Messungen und Erstellung von Messberichten sowie deren Aus- und Bewertung sind noch weitere Messstellen erforderlich, hauptsächlich Grundwassermessstellen im oberflächennahen Bereich Die im Berichtszeitraum vorliegenden Vorschläge sollen in der Folgeperiode vertieft werden. Die Fortsetzung dieser Tätigkeiten inklusive Überführung der derzeit laufenden betrieblichen und behördlichen Maßnahmen des Monitorings, welche sich auf die bisherige Genehmigungslage stützen, in das Konzept des Integralen Monitorings wird daher im Jahr 2025 sukzessive fortschreiten.

3.10 Regionale Arbeitsgruppe Mitte (RG 03)

In dieser Regionalen Arbeitsgruppe wurden im Berichtszeitraum zwei Sitzungen als Videokonferenzen durchgeführt (am 08.05.2024 und am 30.10.2024). Hierin wurden die folgenden Themen behandelt und Ergebnisse erzielt:

- Bericht aus der Entscheidungsgruppensitzung
- Bericht aus der Sitzung der Konzeptgruppe Wasser
- Aktueller Stand der Genehmigungsverfahren
- Laufende Monitoringmaßnahmen, Stand des Betriebes
- Bewertung von Ergebnissen des operativen Monitorings
- Organisation des operativen Monitorings, Hilfsmittel zur Umsetzung der Steckbriefe
- Umsetzung der Steckbriefe auf der regionalen Ebene (im Aufbau)
- Identifizierung benötigter Messstellen und Berichte (im Aufbau)

Zu den Monitoringergebnissen wird unter Kap. 4.3 berichtet. Es wurde ein weiterer Monitoringbericht identifiziert und beschrieben. Der Bestand beläuft sich nun auf insgesamt 8 Messstellen bzw. Berichte und Gutachten mit den zugehörigen Stammdatenblättern und ggf. erforderlichen Steckbriefkonkretisierungen. Eine Aktualisierung zu den bereits bestehenden Messstellen/Berichten

war in einem Fall erforderlich. Zur weiteren Vorbereitung der Aufnahme von Messungen und Erstellung von Messberichten sowie deren Aus- und Bewertung sind noch weitere Messstellen erforderlich, hauptsächlich Grundwassermessstellen im oberflächennahen Bereich, ferner zwei im Rhein. Die im Berichtszeitraum vorliegenden Vorschläge sollen im Zuge der Vorbereitung der Antragstellung für die Wiederaufnahme des Pumpbetriebs am Standort Lohberg vertieft werden. Die Fortsetzung dieser Tätigkeiten inklusive Überführung der derzeit laufenden betrieblichen und behördlichen Maßnahmen des Monitorings, welche sich auf die bisherige Genehmigungslage stützen, in das Konzept des Integralen Monitorings wird daher im Jahr 2025 sukzessive fortschreiten.

3.11 Regionale Arbeitsgruppe Ost (RG 04)

In dieser Regionalen Arbeitsgruppe wurden im Berichtszeitraum zwei Sitzungen als Videokonferenzen durchgeführt (am 18.04.2024 und am 28.11.2024). Hierin wurden die folgenden Themen behandelt und Ergebnisse erzielt:

- Bericht aus der Entscheidungsgruppensitzung
- Bericht aus der Sitzung der Konzeptgruppe Wasser
- Aktueller Stand der Genehmigungsverfahren
- Laufende Monitoringmaßnahmen, Stand des Betriebes
- Ergebnisse der Messungen von Ausgasungen im Stadtgebiet Hamm (Westf.)
- Bewertung von Ergebnissen des operativen Monitorings
- Organisation des operativen Monitorings, Hilfsmittel zur Umsetzung der Steckbriefe
- Umsetzung der Steckbriefe auf der regionalen Ebene (im Aufbau)
- Identifizierung benötigter Messstellen und Berichte (im Aufbau)

Zu den Monitoringergebnissen wird unter Kap. 4.4 berichtet. Es wurde ein weiterer Monitoringbericht identifiziert und beschrieben. Der Bestand beläuft sich nun auf insgesamt 5 Messstellen bzw. Berichte und Gutachten mit den zugehörigen Stammdatenblättern und ggf. erforderlichen Steckbriefkonkretisierungen. Aktualisierungserfordernisse haben sich im Berichtszeitraum nicht ergeben. Zur weiteren Vorbereitung der Aufnahme von Messungen und Erstellung von Messberichten sowie deren Aus- und Bewertung sind noch weitere Grundwassermessstellen im oberflächennahen Bereich erforderlich. Die im Berichtszeitraum angedachten Vorschläge sollen im Zuge der

anstehenden Antragstellung für die Wiederaufnahme des Pumpbetriebs am Standort Haus Aden vertieft werden. Die Fortsetzung dieser Tätigkeiten inklusive Überführung der derzeit laufenden betrieblichen und behördlichen Maßnahmen des Monitorings, welche sich auf die bisherige Genehmigungslage stützen, in das Konzept des Integralen Monitorings wird daher im Jahr 2025 sukzessive fortschreiten.

3.12 Regionale Arbeitsgruppe Ruhr (RG 05)

In dieser Regionalen Arbeitsgruppe wurden im Berichtszeitraum zwei Sitzungen als Videokonferenzen durchgeführt (am 25.04.2024 und am 21.11.2024). Hierin wurden die folgenden Themen behandelt und Ergebnisse erzielt:

- Bericht aus der Entscheidungsgruppensitzung
- Bericht aus der Sitzung der Konzeptgruppe Wasser
- Aktueller Stand der Genehmigungsverfahren
- Laufende Monitoringmaßnahmen, Stand des Betriebes
- Bewertung von Ergebnissen des operativen Monitorings
- Organisation des operativen Monitorings, Hilfsmittel zur Umsetzung der Steckbriefe
- Umsetzung der Steckbriefe auf der regionalen Ebene (im Aufbau)
- Identifizierung benötigter Messstellen und Berichte (im Aufbau)

Zu den Monitoringergebnissen wird unter Kap. 4.5 berichtet. Es wurde ein weiterer Monitoringbericht identifiziert und beschrieben. Der Bestand beläuft sich nun auf insgesamt 20 Messstellen bzw. Berichte und Gutachten mit den zugehörigen Stammdatenblättern und ggf. erforderlichen Steckbriefkonkretisierungen. Eine Aktualisierung zu den bereits bestehenden Messstellen/Berichten war in zwei Fällen erforderlich. Fortsetzung dieser Tätigkeiten inklusive Überführung der derzeit laufenden betrieblichen und behördlichen Maßnahmen des Monitorings, welche sich auf die bisherige Genehmigungslage stützen, in das Konzept des Integralen Monitorings wird daher im Jahr 2025 sukzessive fortschreiten.

4 Ergebnisse des Monitorings in den Regionen

Wie aus den Kapiteln 3.8 bis 3.12 ersichtlich ist, befinden sich die Regionalen Arbeitsgruppen noch im weiteren Aufbau für das operative Monitoring. Daher liegen noch nicht überall Ergebnisse nach dem System des Integralen Monitorings vor. In diesen Fällen werden Erkenntnisse aus den bereits aufgrund der bestehenden Betriebsplanzulassungen bzw. wasserrechtlichen Erlaubnisse laufenden Beobachtungsergebnisse in einem Überblick zusammengefasst. Die wesentlichen Dokumente dazu sind im PiS abgelegt (siehe Kap.1.4).

Der Bestand der im Monitoring herangezogenen Messstellen, Berichte und Gutachten ist in Anhang 2 für die einzelnen Regionalbereiche zusammengestellt ("Fundstellenverzeichnisse"). Bezüglich der Wertebereiche der Zustandskategorien wird auf die Inhalte der Steckbriefe sowie der Steckbriefkonkretisierungen im PiS verwiesen.

4.1 Regionale Arbeitsgruppe Ibbenbüren (RG 01)

4.1.1 Betriebliche Entwicklung

Das Grubenwasser des Westfelds tritt seit den 1980er Jahren drucklos aus dem Mundloch des Dickenberger Stollens auf einem Niveau von + 65 m NHN aus. Der Grubenwasseranstieg ist in diesem Bereich seither abgeschlossen.

Die Wasserhaltungsstandorte des Ostfelds wurden nach Einstellung des aktiven Bergwerksbetriebs an den Nebenwasserhaltungsstandorten Nordschacht am 20.11.2019 bzw. am Bockradener Schacht am 20.04.2020 eingestellt. Der Betrieb der untertägigen Hauptwasserhaltung an den von Oeynhausen-Schächten in Ibbenbüren wurde im Juni 2020 eingestellt. Der Grubenwasserpegel am Nordschacht lag zum Ende des Berichtjahrs bei - 129,8 m NHN (Stichtag: 30.12.2024, siehe *Bild 3*).

Zurzeit wird der Grubenwasserkanal aufgefahren, welcher dazu dienen soll, das Grubenwasser des Ostfelds ab Erreichen des Zielpegels von + 63 m NHN in Richtung Westfeld abzuleiten und in der Nähe des bisherigen Dickenberger Stollens zu Tage zu leiten. Das Grubenwasser beider

Felder soll dann an einer neu konzipierten Anlage in Gravenhorst behandelt und in die Ibbenbürener Aa eingeleitet werden. Das Erreichen des Zielniveaus im Ostfeld wird wegen des, gegenüber den ursprünglichen Prognosen, langsamer laufenden Anstiegs frühestens 2026 erwartet. Für den Fall, dass bis dahin diese Bauvorhaben noch nicht abgeschlossen sein sollten, besteht eine temporäre Behandlungsanlage auf dem Gelände der bisherigen Klärteiche in Püsselbüren im betriebsbereiten Zustand, so dass bei Bedarf an den von Oeynhausen-Schächten vorübergehend Grubenwasser aus dem Ostfeld zu Tage gehoben und behandelt werden kann. Nach derzeitigem Erkenntnisstand über den Fortgang der Vortriebsarbeiten des Grubenwasserkanals und den Verlauf des Wasseranstiegs im Ostfeld hat sich gegenüber dem Vorjahr die Erwartung weiter gefestigt, dass diese temporäre Anlage vsl. nicht in aktiven Betrieb gehen muss.

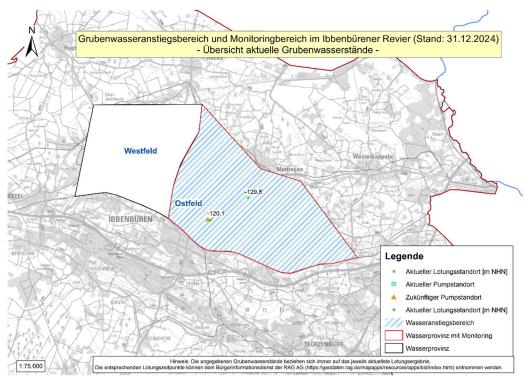


Bild 3 - Grubenwasseranstiegsbereich und Monitoringbereich im Ibbenbürener Revier (Stand: 31.12.2024), Übersicht Lotungsstandorte (Quelle: BRA, Abt. 6, https://www.bra.nrw.de/energie-bergbau/bergbaufolgen/grubenwasseranstieg)

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen - Bericht des Jahres 2024

4.1.2 Themenfeld Ausgasung

Mit dem Monitoring der ausgasungstechnischen Überwachung der Tagesoberfläche und offener Grubenbaue im Bereich des Ostfeldes des Bergwerks Ibbenbüren im Zuge des Wasseranstiegs ist bereits im April 2019 begonnen worden. Im Mai 2024 wurden verstärkt Ausgasungserscheinungen im Bereich von Unstetigkeitserscheinungen/Bruchzonen gemessen. Bei weiteren Kontrollmessungen im Juni 2024 waren diese Werte jedoch rückläufig. Die Bereiche werden im Rahmen des Monitorings intensiv beobachtet. Um mögliche Gaszutritte in Innenräumen auszuschließen, wurden vorsorglich Innenraummessungen durchgeführt. Die Messergebnisse waren unauffällig.

Ende September 2024 wurden im Rahmen des Ausgasungsmonitorings oberhalb des Beustfeldes ebenfalls Ausgasungen detektiert. Als Schutzmaßnahmen wurden Gasentlastungsbohrungen für eine gezielte Abführung des Grubengases umgesetzt und das Messintervall verdichtet. Eine akute Gefährdung bestand nicht.

Insgesamt konnte eine akute Gefährdung durch austretendes Grubengas an der Tagesoberfläche im Bereich des Ostfeldes Ibbenbürens nicht festgestellt werden. Allerdings ist im Zusammenhang mit den bisher festgestellten Gasaustritten eine erhöhte Aufmerksamkeit erforderlich. Insoweit gilt hier der Zustand "Warnung".

Im Zuge des Grubenwasseranstiegs gibt es zunehmend Anfragen zu möglichen Radonbelastungen im Bereich Ibbenbüren. Zur Aufklärung der Situation hat die Bergbehörde Radonmessungen an den Entgasungseinrichtungen des ehemaligen Bergwerks Ibbenbüren initiiert. Mit der Messkampagne wurde Ende Juni 2023 begonnen. Die maximalen Radonkonzentrationen an den Entgasungseinrichtungen liegen bei max. 475 Bq/m³ und entsprechen den Werten aus der aktiven Zeit des Abbaus. Die Radonkonzentrationen an den Messstellen sind durch Überstauung der Gaswegigkeiten abnehmend. Bereits in geringer Entfernung der Entgasungseinrichtungen kann nur noch der natürlich bedingte Umgebungswert gemessen werden. Der Bericht zu den Messungen kann unter https://www.bra.nrw.de/energie-bergbau/bergbaufolgen/ausgasungen heruntergeladen werden. Im Jahr 2025 werden die Messungen an den Entgasungseinrichtungen weiter fortgesetzt.

Um das Ausgasungsverhalten im Steinkohlerevier Ibbenbüren besser zu verstehen, hat sich die Bezirksregierung Arnsberg dazu entschieden, in Zusammenarbeit mit der Zentralen Radonstelle NRW die Radonmessungen im Oktober 2024 auszuweiten. In Anlehnung an das Ausgasungsmonitoring der RAG AG wurden den Eigentümern bzw. den Bewohnern kostenlose Radonmessungen angeboten. Die Messungen sind für einen Messzeitraum von einem Jahr geplant. Sobald die Messergebnisse vorliegen, werden diese ebenfalls in der RG Ibbenbüren vorgestellt.

Bisher konnten durch die Messungen erhöhte Radonbelastungen nicht bestätigt werden. Insoweit gilt für den Parameter Radon der Zustand als "Normal".

4.1.3 Themenfeld Wasser

Die Überwachung der Qualität des einzuleitenden Grubenwassers erfolgt mit Ausnahme zu PCB im vierteljährlichen Rhythmus. Die Ergebnisse der amtlichen Überwachung des Grubenwassers werden im Landesportal ELWAS-WEB veröffentlicht. Die Beprobungen auf PCB im Feststoff erfolgen mittels Schwebstoffsammelkasten. Das Probenahmeprinzip nach welchem das LANUK arbeitet ist ausführlich u. a. in der 1. Fortschreibung des Berichts zum PCB-Sondermessprogramm erläutert. Über die Ergebnisse berichtet das LANUK regelmäßig den beteiligten Behörden (MUNV, MWIKE, BR Arnsberg Abt. 6). Die Ergebnisse der in den Jahren 2023 und 2024 durchgeführten Probenahmen sind tabellarisch im Anhang 4 dargestellt; die Ergebnisse der PCB-Sammelkasten-Analysen sind im Anhang 4 – Teil B dargelegt. Die nachfolgenden Bilder zeigen den Verlauf der Messungen in der Zeitspanne 2023 bis 2024 zu ausgewählten Leitparametern (elektrische Leitfähigkeit; Natrium, Chlorid, Sulfat; Kalium, Magnesium, Calcium; Barium, Zink, Mangan, Eisen Bor, Ammoniumstickstoff; Abfiltrierbare Stoffe).

Zum Parameter Arsen war keine Auswertung möglich, da sämtliche Messwerte < Bestimmungsgrenze (BG) lagen. Die BG schwankte bei den einzelnen Probenahmen und lag bei max. 1 µg/l.

Aufgrund der anhaltenden, intensiven Niederschläge in 2024 und des geringen Abstands des Grubenwasserpegels zur Tagesoberfläche war tendenziell die elektrische Leitfähigkeit (Ausnahme 07.11.2024) in 2024 niedriger als 2023.

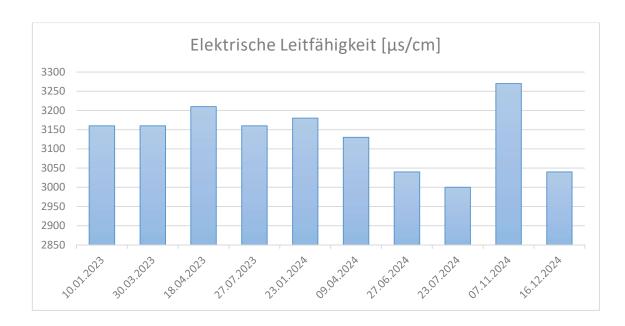


Bild 4 – Elektrische Leitfähigkeit Grubenwasser Westfeld Ibbenbüren 2023 bis 2024

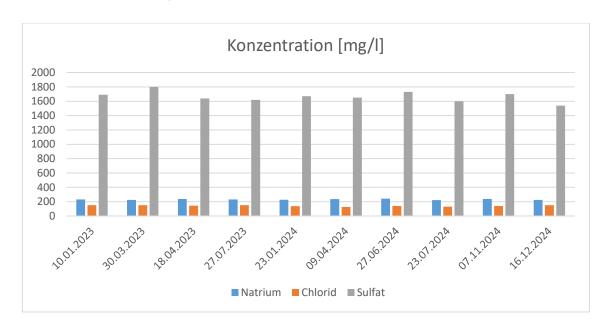


Bild 5 – Konzentrationen Natrium, Chlorid, Sulfat Grubenwasser Westfeld Ibbenbüren 2023 bis 2024

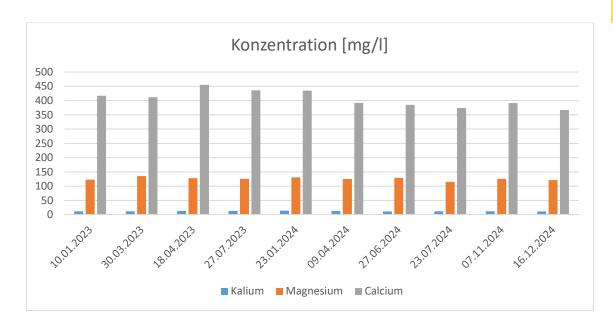


Bild 6 - Konzentrationen Kalium, Magnesium, Calcium Grubenwasser Westfeld Ibbenbüren 2023 bis 2024

Bei Barium, Bor und Zink lagen die Konzentrationen im Bereich der BG bzw. darunter (BG Barium und Zink max. 0,03 mg/l, Bor max. 0,3 mg/l). Bei Mangan traten deutliche Schwankungen der Konzentrationen auf, die bei anderen Schwermetallen nicht in dieser Ausprägung zu verzeichnen sind.

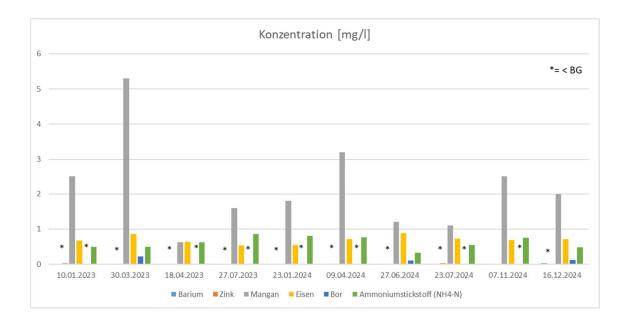


Bild 7 – Konzentrationen Barium, Zink, Mangan, Eisen, Bor, Ammoniumstickstoff Grubenwasser Westfeld Ibbenbüren 2023 bis 2024

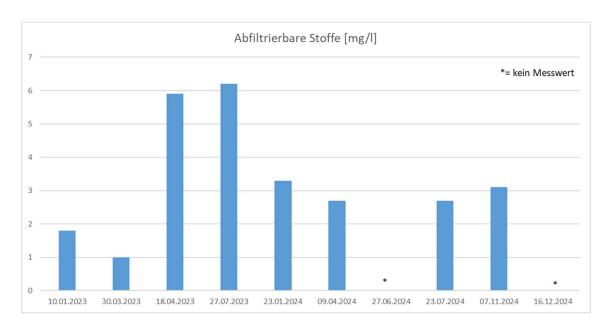


Bild 8 - Konzentration Abfiltrierbare Stoffe Grubenwasser Westfeld Ibbenbüren 2023 bis 2024

Insgesamt liegen die Messergebnisse im Rahmen der langjährigen Erfahrungswerte (vgl. angegebene Mittelwerte im Anhang 4 Teil A).

Aufgrund der planmäßigen temporären Einstellung der Wasserhaltung an den von Oeynhausen-Schächten (siehe Kap. 4.1.1) wurde dort die Probenahme einschließlich des Betriebs des PCB-Sammelkastens im Bereich der Grubenwasserbehandlungsanlage Püsselbüren bereits eingestellt. Für das am Dickenberger Stollen austretende Grubenwasser des Westfelds sind bislang keine Überwachungswerte festgelegt worden. Für das Erreichen der Bewirtschaftungsziele ist gemäß dem Hintergrundpapier Steinkohle zum Bewirtschaftungsplan 2022 bis 2027 (Dokument s. u. https://www.grubenwasser-steinkohle-nrw.de/berichte-gutachten - "Übersichten") mit Blick auf die Umsetzung des Grubenwasserhaltungskonzepts eine Ausnahme vereinbart bzw. es sind abweichende Bewirtschaftungsziele festgelegt worden. Die zulässigen Ablaufwerte der bestehenden Grubenwasserbehandlungsanlage Gravenhorst (Eisen-Fällung) wurden eingehalten, insoweit gilt hierfür der Zustand als "Normal".

Die gehobenen und in die Ibbenbürener Aa eingeleiteten Grubenwassermengen im Jahre 2024 verteilten sich wie folgt:

- Ostfeld (von Oeynhausen-Schächte/Püsselbüren): 0 m³

- Westfeld (Dickenberger Stollen/Gravenhorst): 5,9 Mio. m³

Der Verlauf der jährlichen Grubenwassereinleitmengen der Wasserhaltungsstandorte in dieser Region über den Zeitraum 2014 bis 2024 ist in **Bild 9** dargestellt.

Die intensiven Niederschläge zum Jahreswechsel 2023/2024 und das insgesamt sehr nass verlaufene Jahr 2024 führten dazu, dass insbesondere zu Jahresbeginn 2024 die anfallenden Grubenwassermengen ungewöhnlich stark angestiegen waren und danach sukzessive wieder nachließen. Die maximal zugelassenen jährlichen Grubenwassermengen nach Vorgabe der bestehenden Erlaubnis wurden um ca. 0,4 Mio. m³ überschritten, insoweit gilt hierfür der Zustand "Warnung". Die rückläufige Tendenz zum Jahresende lässt aber erwarten, dass die Rückkehr zum Zustand "Normal" in der Folgeperiode eintreten wird. Da der Abfluss der Ibbenbürener Aa von der Einleitung des Grubenwassers dominiert wird und bei den hier besonders im Fokus stehenden Parametern Chlorid und Sulfat keine erhöhten Konzentrationen im Grubenwasser auftraten, sind keine nachteiligen Auswirkungen auf die Gewässerqualität über das durch die bestehende Erlaubnis gestattete Maß zu besorgen.

Zu den Grundwassermessstellen bezüglich Auswirkungen des Grubenwasseranstiegs wird auf den entsprechenden Monitoringbericht der RAG AG im Projektinformationssystem verwiesen. Auffälligkeiten haben sich hierbei nicht ergeben, insoweit gilt hierfür der Zustand als "Normal".

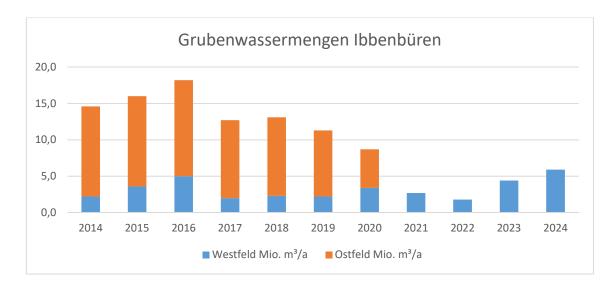


Bild 9 - Verlauf der jährlichen Grubenwassereinleitmengen der Wasserhaltungsstandorte im Bereich der Regionalen Arbeitsgruppe Ibbenbüren (01) über den Zeitraum 2014 bis 2024 (Quelle BRA, Abt. 6)

Die Auswahl geeigneter Grundwassermessstellen zur Beobachtung der Einflüsse auf Schutzgebiete unterhalb der Einleitstellen sowie auf Grundwasserkörper im direkten Kontakt mit den das Grubenwasser aufnehmenden Oberflächengewässern befindet sich noch in der Abstimmungsphase. Daher können hierzu noch keine Ergebnisse berichtet werden.

4.1.4 Themenfeld Bodenbewegung

Mittels Messungen werden die Bodenbewegungen im Bereich des Ostfeldes des Bergwerks Ibbenbüren überwacht. Die Messungen unterteilen sich in Übersichtsmesslinien zur 4-jährlichen Überwachung der Hebungen (Messzyklen entsprechen denen des Leitnivellements), GNSS-Einzelpunkte (Global Navigation Satellite System) zur jährlichen Beobachtung sowie in zwei Detailmesslinien zur Überwachung von Unstetigkeitszonen.

Bei den Messungen der Übersichtsmesslinien und der GNSS-Einzelpunkte wurden Bodenbewegungen in der Größenordnung der Prognosen festgestellt. Bei den Messungen an den Unstetigkeitszonen wurden keine signifikanten Bodenbewegungen festgestellt. Die messtechnisch ermittelten Änderungen liegen hier im Bereich der Messgenauigkeit.

Somit bestehen keine Abweichungen zu den Prognosen bezüglich Bodenbewegungen, Unstetigkeiten, Erderschütterungen und Bewegungen der Füllsäulen nicht dauerstandsicherer Schächte. Insoweit gilt der Zustand als "Normal".

4.2 Regionale Arbeitsgruppe West (RG 02)

4.2.1 Betriebliche Entwicklung

Eine Übersicht über die Wasserhaltungs- und Lotungsstandorte in den Bereichen des Integralen Monitorings im Ruhrrevier liefert *Bild 10*.

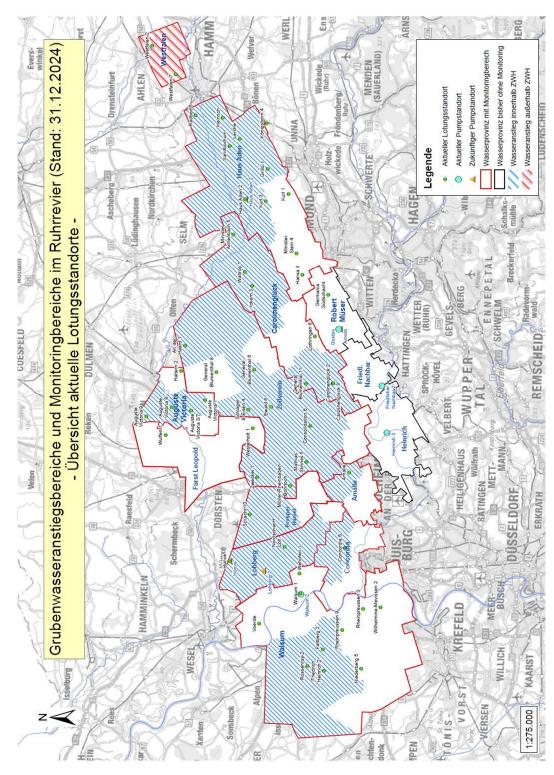


Bild 10 - Grubenwasseranstiegsbereiche und Monitoringbereiche im Ruhrrevier (Stand: 31.12.2024), Übersicht Lotungsstandorte (Quelle: Bezirksregierung Arnsberg, https://www.bra.nrw.de/energie-bergbau/bergbaufolgen/grubenwasseranstieg)

Die Zentrale Wasserhaltung Walsum in Duisburg hat den Zielpegel des Annahmeniveaus bei - 746 m NHN erreicht und ist seit 07.06.2016 wieder in Betrieb. Seit 2020 mit Erreichen des Niveaus - 707 m NHN ist der Grubenwasseranstieg in der Teilprovinz West beinahe zum Erliegen gekommen. Lediglich ein Restanstieg von ca. 2 m pro Jahr ist zu verzeichnen. Dieses Anstiegsverhalten zeigt die Funktionalität der Übertrittsstelle im Niveau - 707 m NHN in Richtung des ehemaligen Bergwerks Walsum an. Der geringe Restanstieg deutet darauf hin, dass ein Überstauen bzw. ein gewisser Vordruck für das Durchleiten der Gesamtwassermenge nötig sind. Spätestens mit Überstauen der nächsthöher gelegenen Übertrittsstelle im Niveau - 613 m NHN wird mit einer weiteren Verringerung des Wasseranstiegs gerechnet bzw. sollte dieser zum Erliegen kommen. (siehe *Bilder 11* und *18*).

Am 30.09.2022 wurde der Betrieb der Zentralwasserhaltung Concordia nach Erteilung der hierfür erforderlichen Betriebsplanzulassung und wasserrechtlichen Erlaubnis eingestellt. Die Erwartung, dass die Grubenwässer aus diesem Bereich ca. ein Jahr nach Einstellung des Pumpbetriebs die Übertrittsschwelle zur Grubenwasserprovinz Walsum auf einem Niveau von ca. - 675 m NHN erreichen werden, hat sich nicht bestätigt. Der Anstieg des Grubenwasserpegels läuft langsamer als in den Prognosen kalkuliert. Gemäß der aktualisierten Prognose wird in der Wasserprovinz Concordia ein Anstieg über - 675 m NHN erwartet. Hierfür wird von der RAG AG eine Abschlussbetriebsplanergänzung erstellt und Anfang 2025 bei der Bergbehörde eingereicht. Der Grubenwasserpegel am Schacht Concordia 6 lag zum Ende des Berichtjahrs bei - 681,9 m NHN (Stichtag: 28.12.2024).

Die für diesen Betriebszustand erteilte wasserrechtliche Erlaubnis ist derzeit beklagt. Der Betrieb findet auf Grundlage einer Anordnung der sofortigen Vollziehung dieser Erlaubnis statt.

Aufgrund der Auflagen in der wasserrechtlichen Erlaubnis bezüglich Phasen der Niedrigwasserführung des Rheins bei anhaltendem Trockenwetter war wegen des insgesamt sehr nass verlaufenen Berichtsjahres und entsprechender Abflüsse des Rheins im Berichtsjahr keine Reduzierung oder Unterbrechung des Pumpbetriebs erforderlich.

Bericht des Jahres 2024

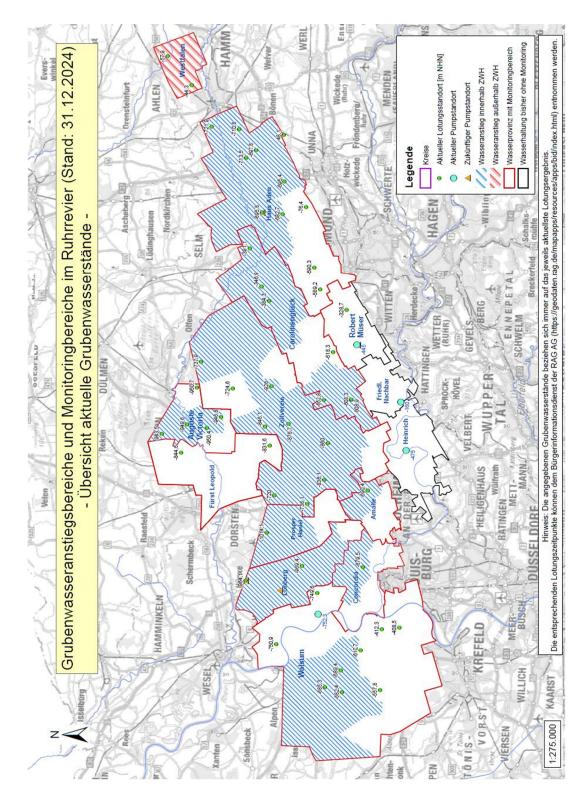


Bild 11 - Aktuelle Grubenwasserstände im Ruhrrevier (Stand: 31.12.2024), (Quelle: BRA, Abt- 6)

4.2.2 Themenfeld Ausgasung

Seit 2014 wird in der Wasserprovinz West gemäß einem gutachterlich festgelegten Messprogramm die Tagesoberfläche ausgasungstechnisch überwacht.

Die Messungen zeigten keine Auffälligkeiten. Eine Gefährdung durch austretendes Grubengas an der Tagesoberfläche konnte bisher nicht festgestellt werden. Auf Grund dessen und dass der Grubenwasseranstieg im Teilbereich West beinahe zum Erliegen gekommen ist und im Teilbereich Walsum abgeschlossen ist, wurde das verdichtete Messprogramm eingestellt. In den beiden Teilbereichen West und Walsum wird das schachtspezifische Monitoring der RAG AG umgesetzt. Hierzu werden in Abständen von ein bis drei Monaten Kontrollmessungen an ausgewählten Schächten durchgeführt.

Für den Bereich der Wasserprovinz Concordia wurde im Rahmen des ABP-Verfahrens für den untertägigen Rückzug und Grubenwasseranstieg ein Ausgasungsmonitoring zugelassen. Die Messungen zeigen keine Auffälligkeiten.

Eine Gefährdung durch austretendes Grubengas an der Tagesoberfläche im Bereich "West" konnte soweit nicht festgestellt werden. Insoweit gilt hier der Zustand als "Normal".

4.2.3 Themenfeld Wasser

Die Überwachung der Qualität des einzuleitenden Grubenwassers erfolgt mit Ausnahme von PCB im vierteljährlichen Rhythmus. Die Ergebnisse der amtlichen Überwachung werden im Landesportal ELWAS-WEB veröffentlicht. Die Messergebnisse der untersuchten Parameter schwanken hierbei um die prognostizierten Mittelwerte, insoweit gilt hierfür der Zustand als "Normal".

Die Beprobungen auf PCB im Feststoff erfolgen am Standort Walsum mittels Schwebstoffsammelkasten. Das Probenahmeprinzip, nach welchem das LANUK arbeitet, ist ausführlich u. a. in der 1. Fortschreibung des Berichts zum PCB-Sondermessprogramm erläutert. Über die Ergebnisse berichtet das LANUK regelmäßig den beteiligten Behörden (MUNV, MWIKE, BRA, Abt. 6). Die Konzentrationen der untersuchten Einzelkongenere lagen unterhalb der für die Gewässer geltenden Umweltqualitätsnorm von 20 µg/kg Trockensubstanz, insoweit gilt hierfür der Zustand als "Normal".

Die Ergebnisse der in den Jahren 2023 und 2024 durchgeführten Probenahmen sind tabellarisch im Anhang 4 dargestellt; die Ergebnisse der PCB-Sammelkasten-Analysen sind im Anhang 4 – Teil B dargelegt. Die nachfolgenden Bilder zeigen den Verlauf der Messungen in der Zeitspanne 2023 bis 2024 zu ausgewählten Leitparametern (elektrische Leitfähigkeit; Natrium, Chlorid, Sulfat; Kalium, Magnesium, Calcium; Barium, Zink, Mangan, Eisen, Bor, Ammoniumstickstoff; Radionuklide Radium 224, Radium 226, Radium 228; Abfiltrierbare Stoffe).

Zum Parameter Arsen war keine Auswertung möglich, da sämtliche Messewerte < Bestimmungsgrenze (BG) lagen. Die BG schwankte bei den einzelnen Probenahmen und lag bei max. 1 µg/l.

Die anhaltenden, intensiven Niederschläge in 2024 haben hier wegen des großen Abstands des Grubenwasserpegels zur Tagesoberfläche keine signifikanten Änderungen der schwankenden elektrischen Leitfähigkeit ausgelöst.

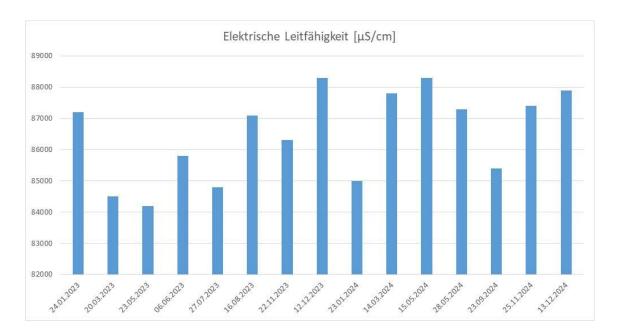


Bild 12 - Elektrische Leitfähigkeit Grubenwasser Walsum 2023 bis 2024

Sowohl bei den Salzionen, als auch bei den Schwermetallparametern sind Schwankungen in der Größenordnung der Prognosewerte anzutreffen (siehe Tabellen in Anhang 4 Teil A). Hierunter ist bei Mangan eine sehr ausgeprägte Bandbreite der Schwankungen zu verzeichnen.

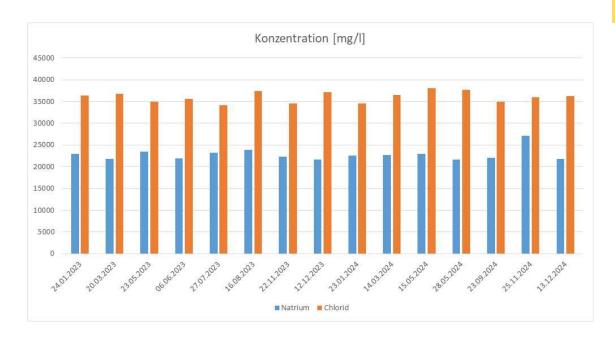


Bild 13 - Konzentrationen Natrium, Chlorid Grubenwasser Walsum 2023 bis 2024

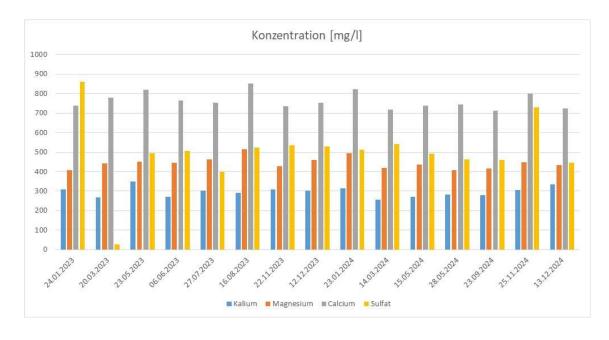


Bild 14 - Konzentrationen Kalium, Magnesium, Calcium, Sulfat Grubenwasser Walsum 2023 bis 2024

Bei Barium und Sulfat sind noch keine wesentlichen Änderungen erkennbar, welche infolge des Übertritts der Grubenwässer aus dem Bereich Concordia nach Walsum möglich sind. Bei Zink lagen die Konzentrationen überwiegend unterhalb der BG, vereinzelt traten Messwerte in der Größenordnung der BG zwischen 0,1 und 0,3 mg/l auf (BG Zink max. 0,2 mg/l).

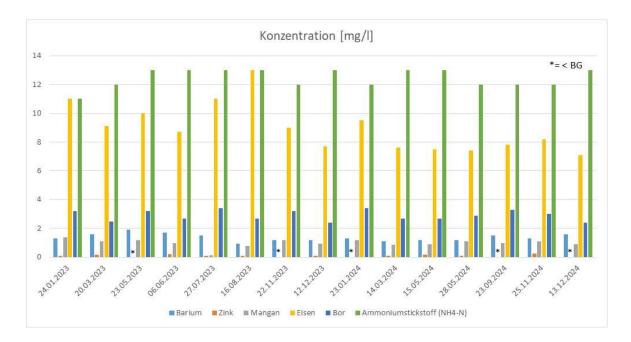


Bild 15 - Konzentrationen Barium, Zink, Mangan, Eisen, Bor, Ammoniumstickstoff Grubenwasser Walsum 2023 bis 2024

Der Verlauf der Aktivitätskonzentrationen der Radionuklide Radium 224, Radium 226 und Radium 228 ist von einem Ausreißer im Sommer 2023 gekennzeichnet. Die radioaktive Belastung der Grubenwässer ist ursächlich dem Teil der Grubenwasserprovinz des ehemaligen Bergwerks West zuzuordnen. Möglicherweise war hier zum Zeitpunkt der Messung der Teilstrom aus diesem Bereich vorübergehend geringer als sonst.

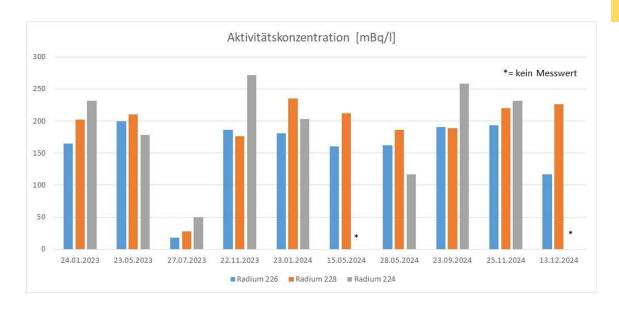


Bild 16 - Aktivitätskonzentrationen Radium 224, Radium 226 und Radium 228 Grubenwasser Walsum 2023 bis 2024

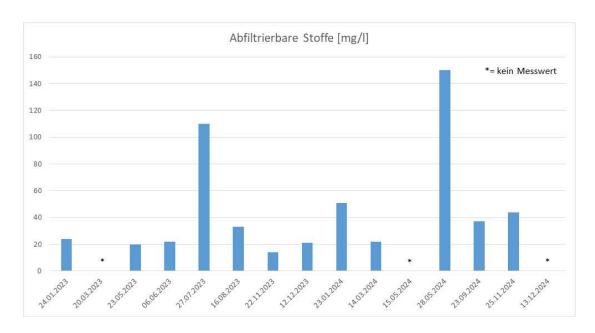


Bild 17 - Konzentration Abfiltrierbare Stoffe Grubenwasser Walsum 2023 bis 2024

Insgesamt liegen die Messergebnisse im Rahmen der langjährigen Erfahrungswerte und überwiegend in der Größenordnung der Prognosewerte (siehe Anhang 4 Teil A).

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen - Bericht des Jahres 2024

Zu den Messstellen bezüglich Auswirkungen des eingeleiteten Grubenwassers auf die Wasserqualität im Rhein mit Fokus auf die Fischruhezone unterhalb der Einleitstelle wird auf den entsprechenden Monitoringbericht der RAG AG im Projektinformationssystem verwiesen. Dieser wurde erstmals im März 2024 für den Zeitraum 2022 – 2023 erstellt. Die Ergebnisse bestätigen die Prognosen und des Strömungsmodells des Erlaubnisantrags 2021. Ferner konnte hierdurch die Wirksamkeit des Pumpmanagements bestätigt werden. Insoweit gilt hierfür der Zustand als "Normal".

Die Wasserhaltung Concordia wurde am 30.09.2022 endgültig eingestellt. Wegen der Stilllegung und der im Erstbericht des LANUK's zum PCB-Sondermessprogramm 2015 dargelegten Gründe fand hier keine PCB-Sammelkastenbeprobung statt (die Messwerte aller untersuchten PCB-Kongenere waren < 1/2 UQN, so dass hier kein weiterer Untersuchungsbedarf gesehen wurde).

Nach Beginn des Übertritts der Wässer der ehemaligen Zentralen Wasserhaltung Concordia ergibt sich rechnerisch unter Zugrundelegung der durchschnittlichen untertägigen Zuflussmengen bei der derzeitig geltenden Niedrigwasserregelung ein Retentionsraum von 57 Tagen. Bei Nachweis der Gewässerverträglichkeit ist durch Veränderung des Pumpbetriebs eine Erweiterung auf 153 Tage möglich.

Trockenwetterbedingte Niedrigwasserphasen im Rhein (Abfluss < MNQ am Pegel Duisburg-Ruhrort), waren im Berichtszeitraum nicht zu verzeichnen. Der Pumpbetrieb konnte daher ohne Einschränkungen laufen. Das zugelassene max. Niveau von - 746 m NHN wurde hierdurch nicht tangiert (siehe *Bild 18*).

Bild 18 - Verlauf des Grubenwasserstands an der Zentralwasserhaltung Walsum 2024 (Quelle: RAG AG)

Die gehobenen und in den Rhein bzw. die Emscher eingeleiteten Grubenwassermengen im Jahre 2024 verteilten sich wie folgt:

Walsum: 4,8 Mio. m³ (Rhein)

Concordia: 0,0 Mio. m³ (Emscher; Betrieb eingestellt 30.09.2022)

Der Verlauf der jährlichen Grubenwassereinleitmengen der Wasserhaltungsstandorte in dieser Region über den Zeitraum 2014 bis 2024 ist in Bild 19 dargestellt.

Die maximal zugelassenen jährlichen Grubenwassermengen aufgrund der bestehenden Erlaubnisse wurden eingehalten, insoweit gilt hierfür der Zustand als "Normal".

Zu den Grundwassermessstellen bezüglich Auswirkungen des Grubenwasseranstiegs wird auf den entsprechenden Monitoringbericht der RAG AG im Projektinformationssystem verwiesen. Auffälligkeiten haben sich hierbei nicht ergeben, insoweit gilt hierfür der Zustand als "Normal".

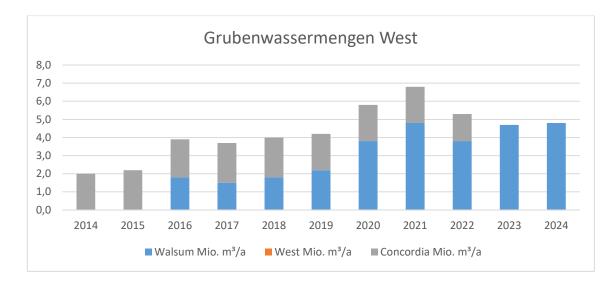


Bild 19 - Verlauf der jährlichen Grubenwassereinleitmengen der Wasserhaltungsstandorte im Bereich der Regionalen Arbeitsgruppe West (02) über den Zeitraum 2014 bis 2024 (Quelle BRA, Abt. 6)

Die Auswahl geeigneter Grundwassermessstellen zur Beobachtung der Einflüsse auf Schutzgebiete unterhalb der Einleitstellen sowie auf Grundwasserkörper im direkten Kontakt mit den das Grubenwasser aufnehmenden Oberflächengewässern befindet sich noch in der Abstimmungsphase. Daher können hierzu noch keine Ergebnisse berichtet werden.

4.2.4 Themenfeld Bodenbewegung

Das Monitoring von Bodenbewegungen wurde von Feinnivellement-Messungen auf satellitengestützte Radardinterferometrie des amtlichen Bodenbewegungskatasters NRW umgestellt. Potentielle Unstetigkeitszonen im Umfeld von tektonischen Störungen, sogenannten Hebungsrandbereichen, werden mittels Detailmesslinien beobachtet. Ferner werden bekannte Unstetigkeiten zusätzlich jährlich begangen.

Signifikante Bodenbewegungen konnten bisher nicht nachgewiesen werden. Somit bestehen keine Abweichungen zu den Prognosen bezüglich Bodenbewegungen, Unstetigkeiten, Erderschütterungen und Bewegungen der Füllsäulen nicht dauerstandsicherer Schächte. Insoweit gilt der Zustand als "Normal".

4.3 Regionale Arbeitsgruppe Mitte (RG 03)

4.3.1 Betriebliche Entwicklung

Die Planungen der RAG AG sehen vor, dass die seit 23.06.2006 eingestellte Wasserhaltung am Standort Lohberg in Dinslaken reaktiviert wird, um ab ca. 2030 beginnend die Grubenwässer der bisherigen Wasserhaltungsstandorte des mittleren Ruhrgebiets anzunehmen (siehe *Bilder 10 und 11*). Nachfolgend wird die Situation der hierin zukünftig integrierten Wasserhaltungen dargelegt:

Die Wasserhaltung Auguste Victoria 3/7 in Marl des ehemaligen Bergwerks Auguste Victoria wurde am 05.05.2019 endgültig eingestellt. Der Grubenwasserpegel liegt am Schacht Auguste Victoria 3 zurzeit bei - 950,4 m NHN (Stichtag: 19.12.2024).

Die Wasserhaltung Franz Haniel in Bottrop des ehemaligen Bergwerks Prosper-Haniel wurde am 18.08.2021 endgültig eingestellt. Der Grubenwasserpegel lag am Schacht 10 zum Ende des Berichtsjahrs bei - 1.015,3 m NHN (Stichtag: 18.12.2024).

Die Wasserhaltung Carolinenglück in Bochum wurde am 31.12.2022 endgültig eingestellt. Der Grubenwasserpegel lag am Schacht Carolinenglück 2 bei - 608,3 m NHN (Stichtag 09.12.2024).

Die Wasserhaltung Zollverein in Essen wurde am 03.03.2023 eingestellt. Da eine regelmäßige Schachtlotung am Schacht Zollverein 2 in 2024 auf Grund von Umbauarbeiten nicht möglich war, wurde der Grubenwasserstand hier über die Sonde 1 am Stinnesdamm abgeleitet. Der Grubenwasserpegel (nicht Bestandteil der Kartendarstellung in Bild 11) lag am Standort Zollverein bei -828,0 m NHN (Stichtag 31.12.2024).

Die Wasserhaltung Amalie in Essen wurde am 11.03.2023 eingestellt. Die Erwartung, dass die Grubenwässer von Amalie nach Zollverein im Bereich der 8. Sohle (- 750 m NHN) vollständig übertreten, hat sich nicht bestätigt. Gemäß der aktualisierten Prognose wird für einen vollständigen Grubenwasserübertritt ein höheres Druckniveau benötigt. Der Grubenwasserpegel lag am Schacht Amalie bei - 691,7 m NHN (Stichtag 28.12.2024).

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen - Bericht des Jahres 2024

4.3.2 Themenfeld Ausgasung

In den Wasserprovinzen Lohberg, Auguste Victoria und Prosper-Haniel wird gemäß einem gutachterlich festgelegten Messprogramm die Tagesoberfläche ausgasungstechnisch überwacht.
Für die Bereiche der Wasserprovinzen Amalie, Zollverein und Carolinenglück wurde im Rahmen
der Abschlussbetriebsplanzulassungen für den untertägigen Rückzug und Grubenwasseranstieg
ein gutachterliches Ausgasungsmonitoring zugelassen. Demnach werden mehr als 300 ehemalige Schächte im monatlichen Intervall überwacht. An den Schächten Centrum Morgensonne,
Emil Süd, Amalie und Holland 4 werden Grubengasabsauganlagen betrieben. Die Grubengasabsauganlagen an den Schächten Carolinenglück und Zollverein 1 sind auf Stand-by-Betrieb. Zum
Schutz der Tagesoberfläche wurden drei Gasentlastungsbohrungen erfolgreich abgeteuft. Bei
zwei weiteren Bohrungen wurde im Bohrziel Standwasser angetroffen. Eine weitere Bohrung
hatte im Bohrziel keine Gaswegigkeit. Vor diesem Hintergrund erfolgte die Planung von Ersatzbohrungen, deren Umsetzung bereits teilweise begonnen hat. Die noch nicht vollständig in Betrieb genommenen Gasentlastungsbohrungen bei gleichzeitig fortschreitendem Grubenwasseranstieg führen zur Einstufung der Situation als "Warnung". Dies erfordert eine erhöhte Aufmerksamkeit.

Eine Gefährdung durch austretendes Grubengas an der Tagesoberfläche konnte bisher nicht festgestellt werden.

4.3.3 Themenfeld Wasser

Zur Wasserhaltung Lohberg liegen keine Untersuchungsergebnisse vor. Die seinerzeitige Wasserhaltung Lohberg für den Betrieb des Bergwerkes wurde 2006 stillgelegt.

Die Überwachung der Qualität des einzuleitenden Grubenwassers an den Standorten Amalie, Carolinenglück und Zollverein endete zum Jahresende 2022. Der übergangsweise Weiterbetrieb der Standorte Amalie und Zollverein zu Beginn des Jahres 2023 war hinsichtlich der Betriebsbedingungen nicht mehr repräsentativ, ferner erfolgte die Betriebseinstellung noch vor Ende des 1. Quartals 2023, so dass auf eine sonst planmäßige Probenahme vor Ende des 1. Quartals 2023 verzichtet wurde. Die Ergebnisse der amtlichen Überwachung bis dahin wurden im Landesportal ELWAS-WEB veröffentlicht. Ebenso ist aus diesem Grunde auch die Beprobung auf PCB im

Feststoff am Standort Zollverein mittels Schwebstoffsammelkasten zum Jahresende 2022 eingestellt worden. Daher liegen für den Berichtszeitraum insgesamt keine Messergebnisse zur Qualität des eingeleiteten Grubenwassers vor.

Der Verlauf der jährlichen Grubenwassereinleitmengen der Wasserhaltungsstandorte in dieser Region über den Zeitraum 2014 bis 2024 ist in **Bild 20** dargestellt.

Da der geplante Zustand – keine Einleitungen in die Emscher – erreicht ist, gilt bezüglich der jährlichen Grubenwassermengen der Zustand als "Normal".

Zu den Grundwassermessstellen bezüglich Auswirkungen des Grubenwasseranstiegs wird auf den entsprechenden Monitoringbericht der RAG AG verwiesen. Auffälligkeiten haben sich hierbei nicht ergeben, insoweit gilt hierfür der Zustand als "Normal".

Wegen des unerwartet starken Anstiegs des Grubenwasserpegels in der Teilprovinz Amalie (siehe Kap. 4.3.1) wurde bezüglich der Grubenwasserpegel hier der Zustand in die Kategorie "Warnung" mit der Maßgabe weiterer Beobachtung eingestuft. In allen übrigen Bereichen gilt der Zustand als "Normal".

Da am Standort Lohberg noch kein Pumpbetrieb besteht, können zu den festgelegten Messstellen zur Beurteilung des Einflusses der Einleitung auf den Rhein derzeit keine Auswertungen durchgeführt werden.

Die Auswahl geeigneter Grundwassermessstellen zur Beobachtung der Einflüsse auf Schutzgebiete unterhalb der Einleitstellen sowie auf Grundwasserkörper im direkten Kontakt mit den das Grubenwasser aufnehmenden Oberflächengewässern befindet sich noch in der Abstimmungsphase. Daher können hierzu noch keine Ergebnisse berichtet werden.

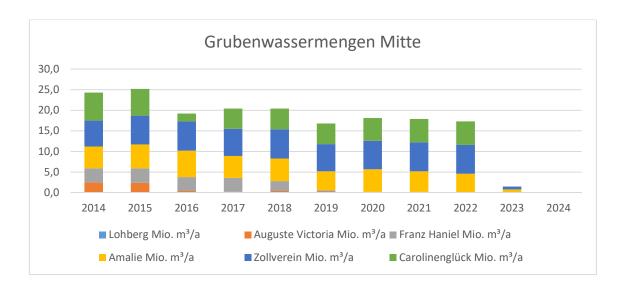


Bild 20 - Verlauf der jährlichen Grubenwassereinleitmengen der Wasserhaltungsstandorte im Bereich der Regionalen Arbeitsgruppe Mitte (03) über den Zeitraum 2014 bis 2024 (Quelle BRA, Abt. 6)

4.3.4 Themenfeld Bodenbewegung

Das Monitoring von Bodenbewegungen wurde von Feinnivellement-Messungen auf satellitengestützte Radardinterferometrie des amtlichen Bodenbewegungskatasters NRW umgestellt. Potentielle Unstetigkeiten werden mittels Detailmesslinien beobachtet. Ferner werden die Unstetigkeiten zusätzlich jährlich begangen.

Bisher wurden überwiegend Restsenkungen in den Bereichen der Wasserprovinzen Prosper-Haniel und Auguste Victoria beobachtet. Lediglich im Bereich des Dorneburger Mühlenbachs wurden Hebungen bedingt durch die Renaturierung der Zuflüsse der Emscher beobachtet.

In den übrigen Überwachungsbereichen der Regionalen Arbeitsgruppe Mitte konnten keine signifikanten Bodenbewegungen nachgewiesen werden. Derzeit bestehen keine Abweichungen zu den Prognosen bezüglich Bodenbewegungen, Unstetigkeiten, Erderschütterungen und Bewegungen der Füllsäulen nicht dauerstandsicherer Schächte. Insoweit gilt der Zustand als "Normal".

4.4 Regionale Arbeitsgruppe Ost (RG 04)

4.4.1 Betriebliche Entwicklung

Die Zentrale Wasserhaltung Haus Aden in Bergkamen ruht seit dem 25.09.2019. Der Grubenwasserpegel lag am Schacht Haus Aden 2 zum Ende des Berichtsjahres bei - 695,8 m NHN (Stichtag: 07.11.2024). Das Erreichen des derzeit zugelassenen Niveaus von - 600 m NHN wird im Mai 2026 erwartet. Die aktuellen Pläne der RAG AG sehen vor, das Grubenwasser auf -380 m NHN ansteigen zu lassen. Für ein höheres Grubenwasserniveau ist eine Abschlussbetriebsplanergänzung erforderlich. Die Antragsunterlagen wurden von Seiten der RAG AG Anfang 2024 eingereicht. Der Antrag befand sich Ende 2024 noch in der Bearbeitung. Eine Zulassung wurde nicht erteilt. Für die Wiederaufnahme des Pumpbetriebs in Teillast im Jahre 2026 befand sich der wasserrechtliche Erlaubnisantrag mit UVP im Berichtszeitraum noch in Vorbereitung. Der Antrag ging nach Ende der Berichtsperiode am 11.04.2025 ein.

4.4.2 Themenfeld Ausgasung

Gemäß einem gutachterlich festgelegten Messprogramm ist die Tagesoberfläche ab einem Wasserstand von - 780 m NHN östlich bzw. - 690 m NHN westlich des Unnaer Sprungs ausgasungstechnisch zu überwachen. Das Monitoring westlich des Unnaer Sprungs erfolgt voraussichtlich in den nächsten Jahren. Das Monitoring im Bereich östlich des Unnaer Sprungs ist im vierten Quartal 2023 gestartet. Im Bereich des Stadtgebiets Hamms wurden im Zuge des Ausgasungsmonitorings Ende 2023 erhöhte Methangehalte an der Tagesoberfläche festgestellt. Zur Überprüfung und Aufklärung wurden weitere Messungen durchgeführt. Die Herkunft des Gases konnte bisher noch nicht abschließend geklärt werden. Eine akute Gefährdung konnte nicht festgestellt werden. Im November und Dezember 2024 wurden im Rahmen des Ausgasungsmonitorings weitere Flächenmessungen im Bereich Hamm Böckum-Hövel durchgeführt. In Bereichen, in denen erhöhte Methangehalte in der Bodenluft im Straßenbereich festgestellt wurden, wurden vorsorglich Innenraummessungen in angrenzenden Wohngebäuden veranlasst. Die bisherigen Messergebnisse waren unauffällig. Da die Messungen und die Auswertungen im Jahr 2024 nicht abgeschlossen waren, lag zum Ende des Berichtszeitraum keine Bewertung des Zustands vor.

4.4.3 Themenfeld Wasser

Zu den Grundwassermessstellen bezüglich Auswirkungen des Grubenwasseranstiegs wird auf den entsprechenden Monitoringbericht der RAG AG verwiesen. Auffälligkeiten haben sich hierbei nicht ergeben, insoweit gilt hierfür der Zustand als "Normal".

Da am Standort Haus Aden aktuell noch kein Pumpbetrieb besteht, können zu den festgelegten Messstellen (Einleitstelle sowie Messstellen in der Lippe ober- und unterhalb der Einleitstelle) zur Beurteilung des Einflusses der Einleitung auf die Lippe derzeit keine Auswertungen durchgeführt werden.

Zur Übersicht ist der Verlauf der jährlichen Grubenwassereinleitmengen der Wasserhaltungsstandorte in dieser Region über den Zeitraum 2014 bis 2024 in *Bild 21* dargestellt.

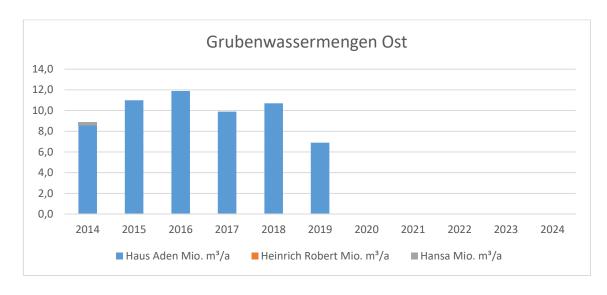


Bild 21 - Verlauf der jährlichen Grubenwassereinleitmengen der Wasserhaltungsstandorte im Bereich der Regionalen Arbeitsgruppe Ost (04) über den Zeitraum 2014 bis 2024 (Quelle BRA, Abt. 6)

Die Auswahl geeigneter Grundwassermessstellen zur Beobachtung der Einflüsse auf Schutzgebiete unterhalb der Einleitstellen sowie auf Grundwasserkörper im direkten Kontakt mit den das Grubenwasser aufnehmenden Oberflächengewässern befindet sich noch in der Abstimmungsphase. Diese sollen im Zuge des Verfahrens zur wasserrechtlichen Erlaubnis (siehe Kap. 4.4.1) festgelegt werden. Daher können hierzu noch keine Ergebnisse berichtet werden.

4.4.4 Themenfeld Bodenbewegung

Das Monitoring von Bodenbewegungen wurde von Feinnivellement-Messungen auf satellitengestützte Radardinterferometrie des amtlichen Bodenbewegungskatasters NRW umgestellt. Potentiellen Unstetigkeitszonen im Umfeld von tektonischen Störungen, sogenannte Hebungsrandbereiche, werden mittels Detailmesslinien beobachtet. Ferner werden bekannte Unstetigkeiten zusätzlich jährlich begangen.

Die Hebungsrandbereiche wurden im Juni 2024 durch Detailmesslinien überprüft. Bei den Messungen und den Begehungen wurden keine Auffälligkeiten festgestellt. Überwiegend liegt Bodenruhe vor. Signifikante Bodenbewegungen konnten nicht nachgewiesen werden. Somit bestehen keine Abweichungen zu den Prognosen bezüglich Bodenbewegungen, Unstetigkeiten, Erderschütterungen und Bewegungen der Füllsäulen nicht dauerstandsicherer Schächte. Insoweit gilt der Zustand als "Normal".

4.5 Regionale Arbeitsgruppe Ruhr (RG 05)

4.5.1 Betriebliche Entwicklung

Die Zentralen Wasserhaltungen Friedlicher Nachbar und Robert Müser in Bochum sowie Heinrich in Essen werden seit mehreren Jahren unverändert betrieben. Der Annahmepegel ist an den Standorten unverändert. Dieser liegt in der Zentralen Wasserhaltung Heinrich bei - 480 m NHN, in der Zentralen Wasserhaltung Friedlicher Nachbar bei - 160 m NHN und in der Zentralen Wasserhaltung Robert Müser bei - 445 m NHN (siehe *Bild 11*).

An der Wasserhaltung Friedlicher Nachbar kam es im Sommer zu einem unerwartet starken Anstieg der anfallenden Grubenwassermengen über die witterungsbedingten Effekte (siehe Kap. 4.5.3) hinaus. Dies erforderte den Dauereinsatz der als Reserve geplanten dritten Pumpe, um ein Übersteigen des zugelassenen maximalen Grubenwasserpegels zu verhindern. Mangels Zutrittsmöglichkeiten in das abgesoffene ehemalige Grubengebäude konnte die genaue Ursache bislang nicht geklärt werden.

Integrales Monitoring für den Grubenwasserstieg im Steinkohlenbergbau in Nordrhein-Westfalen - Bericht des Jahres 2024

Mit Datum 24.04.2024 wurden die Anträge auf Erteilung wasserrechtlicher Erlaubnisse mit gemeinsamer UVP für die drei Standorte gestellt. Im Verfahren sind 19 Träger öffentlicher Belange bzw. Verbände beteiligt worden. Die Antragsunterlagen wurden im Internet sowie in den Kommunen, die entlang der Ruhr bzw. des Nebengewässers Ölbach von den Einleitstellen bis zu Mündung in den Rhein liegen, für die Dauer eines Monats ausgelegt. Nach Ende der Einwendungsfrist von einem Monat gingen insgesamt 15 Stellungnahmen sowie eine Bürgereinwendung ein. Zum Ende des Berichtszeitraums hielt die Auswertung dieser Zuschriften zur Vorbereitung der Erörterung in Form einer Online-Konsultation noch an. Aufgrund der über das Ende des Berichtszeitraums anhaltenden erhöhten Wassermengen (siehe Kap. 4.5.3) wurden am 15.08.2025 Änderungsanträge gestellt, welche in das laufende Verfahren einfließen werden.

4.5.2 Themenfeld Ausgasung

In den drei Wasserprovinzen sind keine grubenwasseranstiegsbedingten Ausgasungen zu erwarten, da das Grubenwasserniveau seit mehreren Jahren unverändert ist, sodass zurzeit ein Monitoring grubenwasseranstiegsbedingter Ausgasungen nicht erforderlich ist.

4.5.3 Themenfeld Wasser

Die Überwachung der Qualität des einzuleitenden Grubenwassers erfolgt mit Ausnahme von PCB im vierteljährlichen Rhythmus. Die Ergebnisse der amtlichen Überwachung werden im Landesportal ELWAS-WEB veröffentlicht. Die Messergebnisse der untersuchten Parameter liegen im Bereich der langjährigen Erfahrungswerte, insoweit gilt hierfür der Zustand als "Normal".

Aufgrund der Ergebnisse der orientierenden Messungen, die im Erstbericht des LANUK zum PCB-Sondermessprogramm 2015 dargelegt sind, findet hier keine PCB-Sammelkastenbeprobung statt (die Messwerte für alle untersuchten Kongenere lagen am Standort Robert Müser VQN, an den übrigen Standorten < 1/2 UQN).

Die Ergebnisse der in den Jahren 2023 und 2024 durchgeführten Probenahmen sind tabellarisch im Anhang 4 dargestellt. Die nachfolgenden Bilder zeigen den Verlauf der Messungen in der Zeitspanne 2023 bis 2024 zu ausgewählten Leitparametern (elektrische Leitfähigkeit; Natrium,

Chlorid, Sulfat; Kalium, Magnesium, Calcium; Barium, Zink, Mangan, Eisen, Bor, Ammonium-stickstoff, Bromid [nur Robert Müser]; Abfiltrierbare Stoffe).

Zum Parameter Arsen war keine Auswertung möglich, da sämtliche Messwerte < Bestimmungsgrenze (BG) bzw. nur einzelne Messwerte an den Standorten Heinrich und Robert Müser vorlagen. Die BG schwankte je nach Probenahme und betrug max. 20 µg/l.

Die anhaltenden, intensiven Niederschläge in 2024 haben hier je nach Abstand des jeweiligen Grubenwasserpegels zur Tagesoberfläche unterschiedliche Änderungen der jahreszeitlich schwankenden elektrischen Leitfähigkeit (Ausnahme 07.11.2024) ausgelöst.

Einen Ausreißer bildet der Messwert der Leitfähigkeit im Mai 2024 am Standort Friedlicher Nachbar. Zur Ursache siehe Kap. 4.5.1, 2. Absatz. Der erhöhte Wert der Leitfähigkeit am Standort Heinrich im November 2024 korreliert nicht mit dem Verlauf der Konzentrationen der Salze, daher ist hier ein Mess-/Ablesefehler anzunehmen.

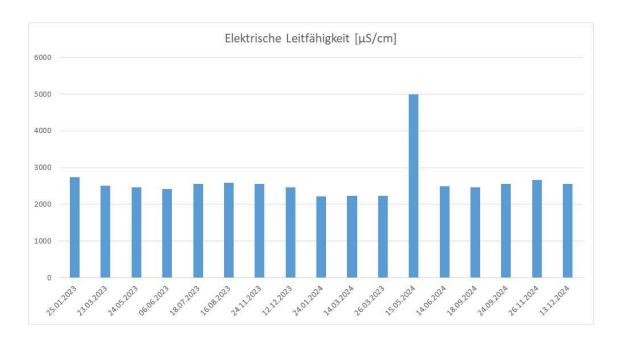


Bild 22 - Elektrische Leitfähigkeit Grubenwasser Friedlicher Nachbar 2023 bis 2024

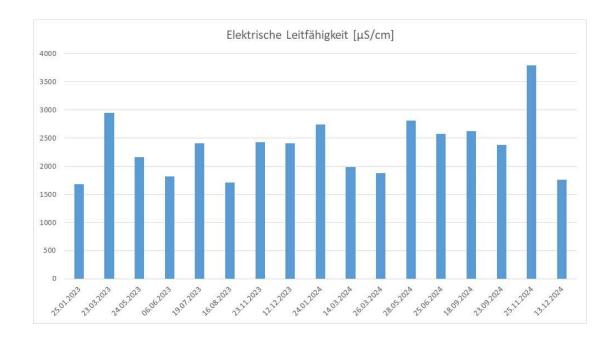


Bild 23 - Elektrische Leitfähigkeit Grubenwasser Heinrich 2023 bis 2024

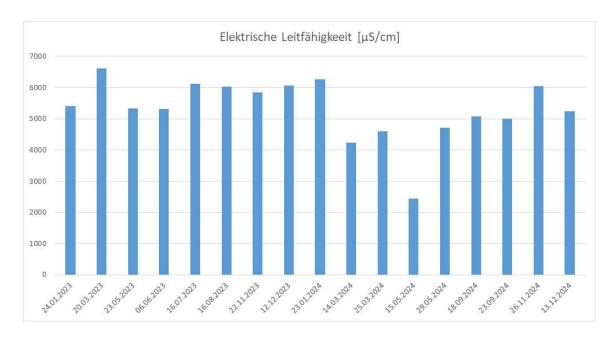


Bild 24 - Elektrische Leitfähigkeit Grubenwasser Robert Müser 2023 bis 2024

Sowohl bei den Salzionen, als auch bei den Schwermetallparametern sind Schwankungen in der Größenordnung des Mittelwerts langjähriger Erfahrungswerte (Zeitraum 2010 – 2022, siehe Anhang 4 Teil A) anzutreffen. Auch hier ragt am Standort Friedlicher Nachbar im Mai 2024 aus den

oben genannten Gründen (vgl. Kap. 4.5.1, 2. Absatz) das Ergebnis bei Natrium, Chlorid und Eisen aus der üblichen Bandbreite heraus.

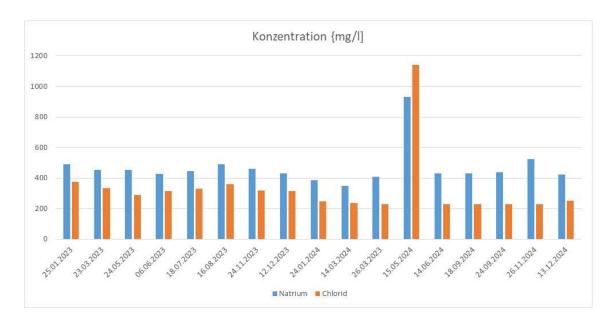


Bild 25 - Konzentrationen Natrium, Chlorid Grubenwasser Friedlicher Nachbar 2023 bis 2024

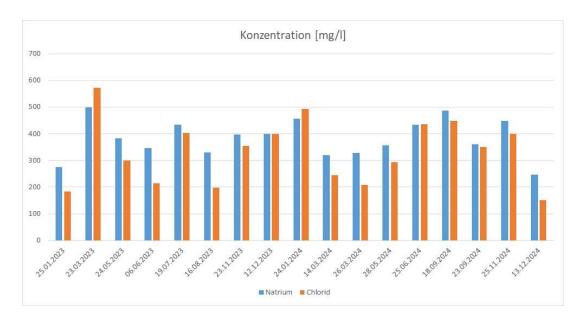


Bild 26 - Konzentrationen Natrium, Chlorid Grubenwasser Heinrich 2023 bis 2024

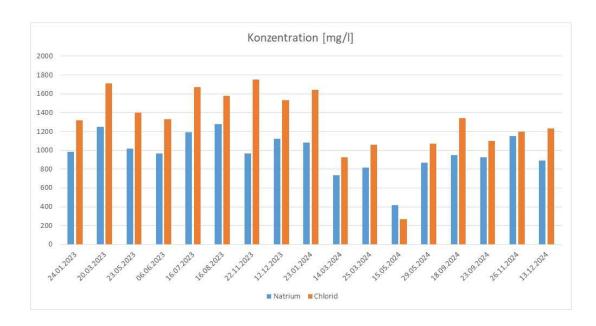


Bild 27 - Konzentrationen Natrium, Chlorid Grubenwasser Robert Müser 2023 bis 2024

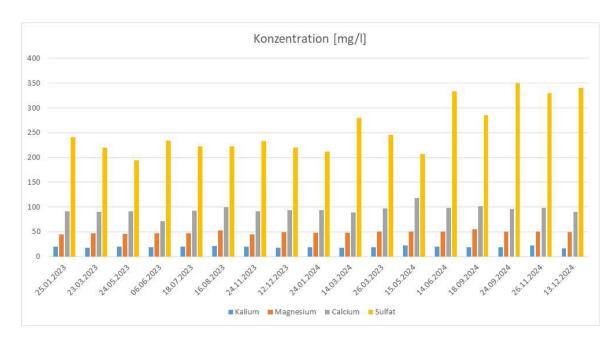


Bild 28 - Konzentrationen Kalium, Magnesium, Calcium, Sulfat Grubenwasser Friedlicher Nachbar 2023 bis 2024

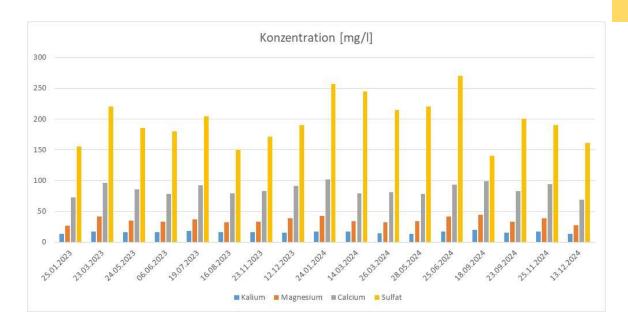


Bild 29 - Konzentrationen Kalium, Magnesium, Calcium, Sulfat Grubenwasser Heinrich 2023 bis 2024

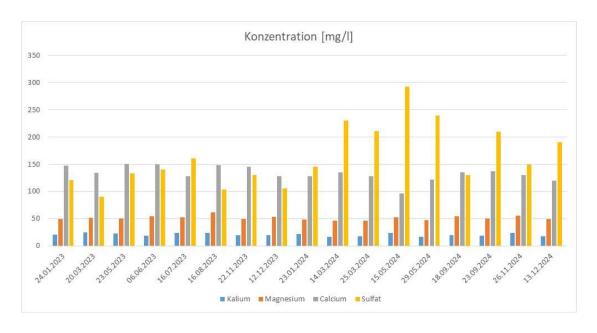


Bild 30 - Konzentrationen Kalium, Magnesium, Calcium, Sulfat Grubenwasser Robert Müser 2023 bis 2024

Bei Zink lagen die Konzentrationen am Standort Robert Müser durchgängig, am Standort Friedlicher Nachbar überwiegend unterhalb der BG, vereinzelt traten hier Messwerte in der Größenordnung der BG bis 0,06 mg/l auf (BG Zink max. 0,03 mg/l). Am Standort Heinrich sind jedoch überwiegend Messwerte > BG (bis ca. 0,1 mg/l) zu verzeichnen.

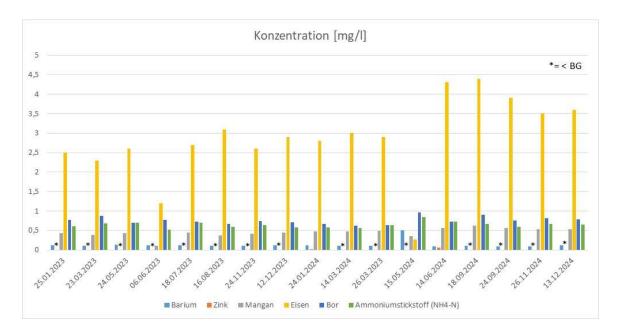


Bild 31 - Konzentrationen Barium, Zink, Mangan, Eisen, Bor, Ammoniumstickstoff Grubenwasser Friedlicher Nachbar 2023 bis 2024

Bromid wurde standortspezifisch nur bei Robert Müser ausgewertet. Hier sind jahreszeitlich bedingt deutlich schwankende Konzentrationen festzustellen. An diesem Standort ist im Juni 2024 und mit sinkendender Tendenz im September 2024 eine ungewöhnlich hohe Eisenkonzentration aufgetreten. Diese ist als Ausreißer zu werten bzw. beruht auf einem möglichen Sondereffekt, der aber nachträglich nicht aufgeklärt werden konnte.

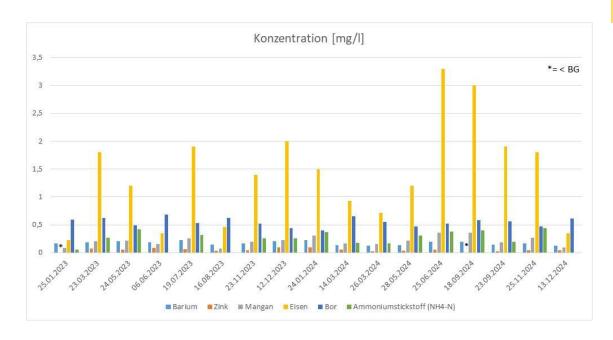


Bild 32 - Konzentrationen Barium, Zink, Mangan, Eisen, Bor, Ammoniumstickstoff Grubenwasser Heinrich 2023 bis 2024

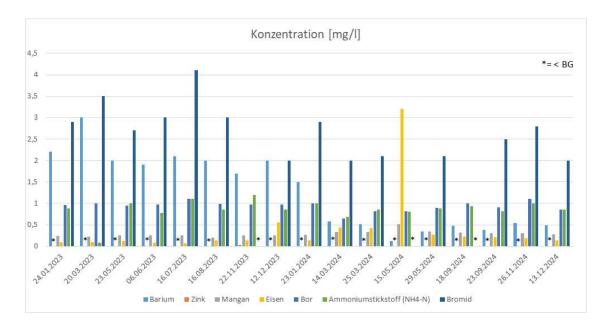


Bild 33 - Konzentrationen Barium, Zink, Mangan, Eisen, Bor, Ammoniumstickstoff, Bromid Grubenwasser Robert Müser 2023 bis 2024

Bericht des Jahres 2024

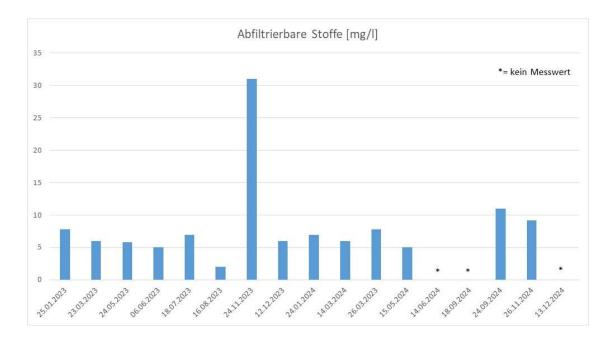


Bild 34 - Konzentration Abfiltrierbare Stoffe Grubenwasser Friedlicher Nachbar 2023 bis 2024

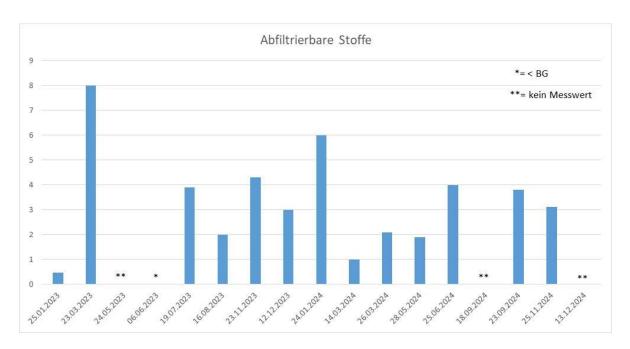


Bild 35 - Konzentration Abfiltrierbare Stoffe Grubenwasser Heinrich 2023 bis 2024

Bei den Abfiltrierbaren Stoffen lagen die Messwerte teilweise < BG (BG max. 2 mg/l). Am Standort Friedlicher Nachbar fällt ein Ausreißer im November 2023 auf. Mögliche Ursache ist eine Aufwirbelung von sedimentierte Feststoffen kurz vor oder im Zuge der Probenahme.

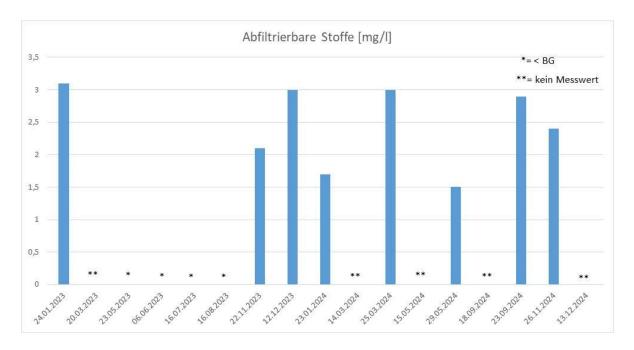


Bild 36 - Konzentration Abfiltrierbare Stoffe Grubenwasser Robert Müser 2023 bis 2024

Bis auf die oben erwähnten Besonderheiten liegen die Messergebnisse an den drei Standorten im Rahmen des Mittelwerts langjähriger Erfahrungswerte (Zeitraum 2010 – 2022).

Für trockenwetterbedingte Niedrigwasserphasen in der Ruhr (Abfluss < 20 m³/s am Pegel Hattingen), ist in der wasserrechtlichen Erlaubnis für den Standort Heinrich eine Reduzierung bzw. Unterbrechung des Pumpbetriebs geregelt. Hierzu war der RAG AG im Jahre 2020 eine Ausnahme von der einschlägigen Nebenbestimmung der wasserrechtlichen Erlaubnis bewilligt worden, die seither Bestand hatte. Aufgrund der Ergebnisse der Überprüfung im September 2022 ist diese Regelung im Zuge der Entscheidung über übergangsweisen Weiterbetrieb überarbeitet und an die aktuellen Erkenntnisse im Dezember 2023 angepasst worden. Aufgrund der unkritischen Messergebnisse war es nicht erforderlich, Betriebsunterbrechungen anzuordnen. Mit Blick auf die geplante Reduzierung der Mindestabflüsse durch die angestrebte Änderung des Ruhrverbandsgesetzes wird im Zuge der begonnenen Erlaubnisverfahren mit gemeinsamer UVP für den zukünftigen betrieblichen Endzustand (siehe Kap. 4.5.1) ggf. eine weitere Anpassung erfolgen. Zur Optimierung der Steuerung des Pumpbetriebs und zur Verifizierung der Mischungsrechnungen

der Anträge ist am Standort Heinrich ein Monitoring der stofflichen Belastung der Ruhr vorgesehen. Dieses befindet sich noch in Vorbereitung.

Die gehobenen und in die Ruhr bzw. deren Nebengewässer eingeleiteten Grubenwassermengen im Jahre 2024 verteilten sich wie folgt:

Friedlicher Nachbar: 12,4 Mio. m³

Heinrich: 19,4 Mio. m³

Robert Müser: 11,3 Mio.m³

Der Verlauf der jährlichen Grubenwassereinleitmengen der Wasserhaltungsstandorte in dieser Region über den Zeitraum 2014 bis 2024 ist in **Bild 37** dargestellt.

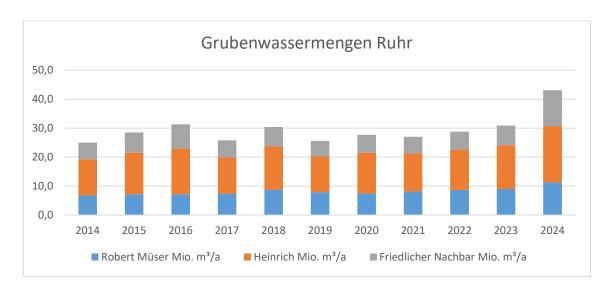


Bild 37 - Verlauf der jährlichen Grubenwassereinleitmengen der Wasserhaltungsstandorte im Bereich der Regionalen Arbeitsgruppe Ruhr (05) über den Zeitraum 2014 bis 2024 (Quelle BRA, Abt. 6)

Die intensiven Niederschläge zum Jahreswechsel 2023/2024 und das insgesamt sehr nass verlaufene Jahr 2024 führten dazu, dass im Verlaufe des Berichtsjahres die anfallenden Grubenwassermengen an allen drei Standorten ungewöhnlich stark angestiegen waren und danach sukzessive wieder nachließen. Am Standort Friedlicher Nachbar wurde wegen der Überlagerung mit Sondereffekten (siehe Kap. 4.5.1) ein historisches Maximum seit 1996 erreicht. Die maximal zugelassenen jährlichen Grubenwassermengen nach Vorgabe der bestehenden Erlaubnis wurden an allen drei Standorten um ca. 4,1 Mio. m³ (Friedlicher Nachbar), ca. 1,4 Mio. m³ (Heinrich) bzw.

ca. 1,5 Mio. m³ (Robert Müser), überschritten. Bei den beiden letzten Standorten wurden jedoch die Kurzzeitwerte, welche von der verfügbaren Pumpentechnik abhängig sind, eingehalten. Eine Überprüfung der Auswirkungen auf die Gewässerqualität unter Einbeziehung eines Gutachtens ergab, dass hierdurch keine nachteiligen Auswirkungen auf die Gewässerqualität ausgelöst wurden. Insoweit gilt für die Wassermengen der Zustand "Warnung", für die Wasserqualität der Zustand "Normal". Die rückläufige Tendenz zum Jahresende lässt erwarten, dass bei anhaltendem Trend die Rückkehr insgesamt zum Zustand "Normal" in der Folgeperiode eintreten wird.

Die Auswahl geeigneter Grundwassermessstellen zur Beobachtung der Einflüsse auf Schutzgebiete unterhalb der Einleitstellen sowie auf Grundwasserkörper im direkten Kontakt mit den das Grubenwasser aufnehmenden Oberflächengewässern befindet sich weiterhin noch in der Abstimmungsphase. Diese sollen im Zuge des Verfahrens zur wasserrechtlichen Erlaubnis (siehe Kap. 4.5.1) festgelegt werden. Daher können hierzu noch keine Ergebnisse berichtet werden.

4.5.4 Themenfeld Bodenbewegung

Auf Grund dessen, dass das Grubenwasserniveau seit mehreren Jahren unverändert ist, sind in den drei Wasserprovinzen keine grubenwasseranstiegsbedingten Bodenbewegungen zu erwarten, so dass zurzeit ein Monitoring grubenwasseranstiegsbedingter Bodenbewegungen nicht erforderlich ist.

5 Ausblick für 2025

Für die Entscheidungsgruppe ist für das Jahr 2025 eine Sitzung geplant. Hierin sollen die Berichterstattungen der Konzeptgruppen und der Regionalen Arbeitsgruppen bewertet und deren Arbeit koordinierend begleitet werden, insbesondere, sofern sich raumübergreifende Fragestellungen ergeben sollten.

Wegen der Erledigung ihrer Arbeitsaufträge sind die Konzeptgruppen Ausgasung und Bodenbewegung sowie die Unterarbeitsgruppe Daten ruhend gestellt worden. Weitere Sitzungen im Jahr 2025 sind daher nicht geplant. Für die Konzeptgruppe Wasser und die Unterarbeitsgruppe Tiefe Pegel ist zunächst vorgesehen, in Abhängigkeit vom Fortgang der Arbeitsergebnisse zur Umsetzung des Gutachtens "Tiefe Pegel" bei Bedarf jeweils eine weitere Folgesitzung in 2025 durchzuführen.

Der Fokus der Arbeiten wird sich daher weiter auf die Regionalen Arbeitsgruppen verstärken, in denen das operative Monitoring fortgesetzt und nach Bedarf, insbesondere im Bereich Grundwasserbeobachtung, noch erweitert werden soll. Die Sitzungen der fünf Regionalen Arbeitsgruppen sollen jeweils im etwa halbjährlichen Rhythmus fortgesetzt werden, beginnend im April 2025.

Das PiS wird fortlaufend entsprechend der Arbeitsergebnisse ergänzt. Wesentlicher Schwerpunkt wird hierbei sein, bei Bedarf weitere Messstellen sukzessive in das operative Monitoring aufzunehmen und die Ergebnisse des operativen Monitorings in die Dokumentation einzubinden.

Das Projekthandbuch liegt in der ersten Revisionsfassung vor und wird im laufenden Monitoringprozess ständig unter Mitwirkung aller Beteiligten weiter fortgeschrieben und so der Prozesscharakter des Monitorings dokumentiert.

Der vorliegende Bericht für das Jahr 2024 wurde in der Entscheidungsgruppensitzung am 18.09.2025 vorgestellt und zur Veröffentlichung freigegeben.

Anhang 1

Institutionelle Besetzung der Gremien

Bericht des Jahres 2024

Besetzung der Gremien -

Entscheidungsgruppe/Konzeptgruppen (KG) mit Unterarbeitsgruppen (UAG)

Entscheidungsgruppe/Konzeptg	Ent-	Konzeptgruppen					
Teilnehmerkreis	scheidungs- gruppe	Ausgasung	Wasser	UAG Tiefe Pegel	Boden- bewegung	UAG Daten	
MWIKE	х			х		Х	
MUNV	х	х	х	х	х	х	
BR Arnsberg, Abteilung 6 (Bergbehörde)	х	х	х	х		х	
Geologischer Dienst NRW	х	х	х	х	х	х	
LANUK	х		х	x		х	
BR Köln, Geobasis NRW	х				х		
BR Arnsberg, Abteilung 5	х		х				
BR Düsseldorf	х		х	х		х	
BR Münster			х				
AWWR Arbeitsgemeinschaft der Wasserwerke an der Ruhr e.V.	х		х	x			
AGW Arbeitsgemeinschaft der Wasserwirtschaftsverbände	х						
Gelsenwasser							
Stadtwerke Essen							
BDEW NRW	х		х				
BDEW Berlin			х				
Emschergenossenschaft / Lippeverband			х	х	х		
Ruhrverband			х				
BUND NRW e.V.	х	х	х		х	х	
Fischereiverband NRW							
Arbeitsgemeinschaft für Naturschutz Tecklenburger Land Wald und Holz NRW -Regionalforstamt Münsterland							
Landwirtschaftskammer NRW	х	х	х		х		
Landwirtschaftskammer NRW - Bezirksstelle für Agrarstruktur Münsterland							
LVBB e.V.	х	х	Х	Х	х	х	
VBHG					х		

Fortsetzung nächste Seite

Fortsetzung Besetzung der Gremien -Entscheidungsgruppe/Konzeptgruppen (KG) mit Unterarbeitsgruppen (UAG)

	Ent-	Konzeptgruppen				
Teilnehmerkreis	scheidungs- gruppe	Ausgasung	Wasser	UAG Tiefe Pegel	Boden- bewegung	UAG Daten
Landkreistag NRW	х					
Kreis Recklinghausen						
Kreis Steinfurt			х	х		
Kreis Unna			x		х	
Kreis Wesel			х		х	
Regionalverband Ruhr	х					
Städtetag NRW	х					
Stadt Bergkamen						
Stadt Bochum						
Stadt Bottrop			x		х	
Stadt Datteln						
Stadt Dortmund		х			х	
Stadt Duisburg		х	х		х	
Stadt Essen		х	х		х	
Stadt Gelsenkirchen		х			х	
Stadt Hamm		х			х	
Stadt Herne						
Stadt Ibbenbüren						
Stadt Lünen						
Stadt Recklinghausen						
Stadt Selm						
Gemeinde Mettingen						
Gemeinde Recke						
Gemeinde Westerkappeln						
RAG AG	х	х	х	х	х	х
RAG AG Unternehmensbereich lbbenbüren						
Ruhr Uni Bochum					х	
Technische Hochschule Georg Agricola			Х	х		
Open Grid Europe GmbH						

(Stand: 12.2024)

Integrales Monitoring für den Grubenwasseranstieg im Steinkohlenbergbau in Nordrhein-Westfalen

Bericht des Jahres 2024

Besetzung der Gremien – Regionale Arbeitsgruppen (RG)

	Regionale Arbeitsgruppen					
Teilnehmerkreis	01 Ibbenbüren	02 West	03 Mitte	04 Ost	05 Ruhr	
MWIKE						
MUNV	х	х	х	х	х	
BR Arnsberg, Abteilung 6 (Bergbehörde)	х	х	х	х	х	
Geologischer Dienst NRW	х					
LANUK	х	х	х	х	х	
BR Köln, Geobasis NRW						
BR Arnsberg, Abteilung 5			х	х	х	
BR Düsseldorf		х	х		х	
BR Münster	х		х	х		
AWWR Arbeitsgemeinschaft der Wasserwerke an der Ruhr e.V. AGW Arbeitsgemeinschaft der Wasserwirtschaftsverbände					х	
Gelsenwasser			x			
Stadtwerke Essen			х		х	
BDEW NRW						
BDEW Berlin						
Emschergenossenschaft / Lippeverband		х	х	х	х	
Ruhrverband					х	
BUND NRW e.V.						
Fischereiverband NRW				х		
Arbeitsgemeinschaft für Naturschutz Tecklenburger Land	х					
Wald und Holz NRW -Regionalforstamt Münsterland	х					
Landwirtschaftskammer NRW						
Landwirtschaftskammer NRW - Bezirksstelle für Agrarstruktur Münsterland	х					
LVBB e.V.	х	х	х	х	х	
VBHG						

Fortsetzung nächste Seite

Fortsetzung Besetzung der Gremien - Regionale Arbeitsgruppen (RG)

	Regionale Arbeitsgruppen					
Teilnehmerkreis	01 Ibbenbüren	02 West	03 Mitte	04 Ost	05 Ruhr	
Landkreistag NRW						
Kreis Recklinghausen			х			
Kreis Steinfurt	х					
Kreis Unna				х		
Kreis Wesel			х			
Regionalverband Ruhr						
Städtetag NRW						
Stadt Bergkamen				х		
Stadt Bochum			х			
Stadt Bottrop			х			
Stadt Datteln			х	х		
Stadt Dortmund				х		
Stadt Duisburg						
Stadt Essen			х		х	
Stadt Gelsenkirchen			х			
Stadt Hamm				х		
Stadt Herne			х			
Stadt Ibbenbüren	х					
Stadt Lünen				х		
Stadt Recklinghausen			х			
Stadt Selm			х			
Gemeinde Mettingen	х					
Gemeinde Recke	х					
Gemeinde Westerkappeln	Х					
RAG AG	Х	Х	Х	Х	Х	
RAG AG Unternehmensbereich Ibbenbüren	х					
Ruhr Uni Bochum						
Technische Hochschule Georg Agricola						
Open Grid Europe GmbH			Х			

(Stand 12.2024)

Anhang 2

Fundstellenverzeichnisse (Messstellen, Berichte, Gutachten)

Regionale Arbeitsgruppe 01 - Ibbenbüren

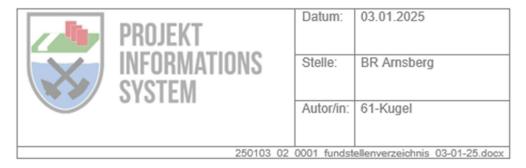
	PROJEKT	Datum:	19.02.2024			
N. S.	INFORMATIONS System	Stelle:	BR Arnsberg			
	01012	Autor/in:	63-Wissen			
	240219 01 0001 tabelle fundstellen messstellen berichte 19-02-24 .docx					

FUNDSTELLENVERZEICHNIS MESSSTELLEN / BERICHTE

Stand: 19.02.2024

PIS			Func	Istelle
RG	Lfd.	Portal	Bez	zeichnung im Portal
	Nr.		Nr.	Beschreibung
01	0001	RAG AG		Abschlussbetriebsplan Anlage 17
				Prognose zur optimierten
				Wasserannahme nach
				Stilllegung des
				Steinkohlenbergwerks
				Ibbenbüren (Ostfeld)
01	0002	RAG AG		Abschlussbetriebsplan Anlage 14
				Einfluss eines Wasseranstiegs
				im Ostfeld des
				Steinkohlenbergwerks
				Ibbenbüren (Ostfeld) auf die
				PCB-Gehalte im Grubenwasser
01	0003	RAG AG		Antrag wasserrechtliche
				Erlaubnis Anlage 2
				Grubenwasserqualitäten / PCB
01	0004	RAG AG		Antrag wasserrechtliche
				Erlaubnis Anlage 7
				Fachbeitrag zur
				Wasserrahmenrichtlinie
01	0005	ELWAS/ELKA	22221182	Dickenberger Stollen Mundloch
01	0006	ELWAS/ELKA	22221183	Enteisenungsanlage Auslauf
01	0007	ELWAS/ELKA	22221179	Auslauf Grubenwasserkanal /
				Auffahrung GWK West
01	8000	ELWAS/ELKA	22221181	Einleitungsmessstelle
				AzGA Gravenhorst Auslauf
01	0009	ELWAS/ELKA	22221184	Püsselbürener Klärteiche Einlauf
01	0010	ELWAS/ELKA	22221185	Einleitungsmessstelle
				Püsselbürener Klärteiche Auslauf
01	0011	ELWAS	3448390000200	OW-Mengen Pegel
				Pegel Hörstel
01	0012	ELWAS	805750	OW-Zustands-Messstelle
				l6 uh Ibbenbüren an der K6
01	0013	ELWAS	808593	OW-Zustands-Messstelle

Fortsetzung Regionale Arbeitsgruppe 01 - Ibbenbüren


	PIS	S Fundstelle		
RG	Lfd.	Portal		Bezeichnung im Portal
-30507,0000	Nr.	20 40.00.000.000	Nr.	Beschreibung
				I5a, uh ehem. Kraftw.
				Ibbenbüren / oh KA Ibbenb
				Püsselbüren
01	0014	ELWAS	899914	OW-Zustands-Messstelle
				KA38, uh Nouryon GmbH (früher
				Akzo), oh Stollenbach
01	0015	ELWAS	809792	OW-Zustands-Messstelle
				I4b uh Westfeld, oh Düker MLK
01	0016	RAG AG		Abschlussbetriebsplan Anlage 11
				Gutachterliche Stellungnahme
				zur Gefährdungsabschätzung
				und zum Monitoring
				bezüglich möglicher Gasaustritte
				an der Tagesoberfläche
				und in offene Grubenbaue im
				Bereich des Ostfeldes
				des Bergwerkes Ibbenbüren
				der RAG Anthrazit Ibbenbüren
				GmbH
01	0017	RAG AG		Abschlussbetriebsplan Anlage 15
				Gutachterliche Stellungnahme
				zur Auswirkung des
				Grubenwasseranstiegs im
				Ostfeld des Bergwerkes
				Ibbenbüren auf die
				Tagesoberfläche
				(Bodenbewegung)
01	0018	RAG AG		Abschlussbetriebsplan Anlage 18
				Bewertung der Auswirkungen
				des geplanten
				Grubenwasseranstiegs im
				Ostfeld des Bergwerkes
				Ibbenbüren auf die
				Standsicherheit verfüllter
				Schächte
01	0019	PiS		Monitoringbericht
				Regionalgruppe Ibbenbüren
01	0020	RAG AG		"Monitoringkonzept für die
				Überwachung der
				Grubenwassersituation in den
				durch den Grubenwasseranstieg
				im Ostfeld des Bergwerkes
				Ibbenbüren potentiell betroffenen

Bericht des Jahres 2024

Fortsetzung Regionale Arbeitsgruppe 01 - Ibbenbüren

PIS			Fundstelle		
RG	Lfd.	Portal	Bez	zeichnung im Portal	
	Nr.		Nr. Beschreibung		
				Gebieten" - Prof. Dr. Coldewey;	
				04.08.2020	
01	0021	ELWAS		Lotungsstelle Nordschacht	
01	0022	ELWAS		Lotungsstelle Schacht	
				Oeynhausen III	

Regionale Arbeitsgruppe 02 – West

FUNDSTELLENVERZEICHNIS MESSSTELLEN / BERICHTE

Stand: 03.01.2025

F	PIS		Fundstelle		
RG	Lfd.	Portal	Bezeichnung im Portal		
	Nr.		Nr.	Beschreibung	
02	0001	RAG BID		Walsum – Antrag	
				wasserrechtliche Erlaubnis	
				Anlage 2 "Mischungsbe-	
				rechnungen und	
				Wirkungsprognosen für den	
				Rhein unter Berücksichtigung der	
				Vorgaben aus der EU-WRRL*	
02	0002	RAG BID		Walsum – Antrag	
				wasserrechtliche Erlaubnis	
				Anlage 6 "Ergebniskurzbericht zur	
				Grubenwasser-entwicklung	
				Walsum nach Einstellung der	
				Wasserhaltung Concordia –	
	2000	B 4 0 B B		Datenstand März 2021 -"	
02	0003	RAG BID		Abschlussbetriebsplanergänzung	
				Concordia Anlage 14	
				"Gutachterliche Stellungnahme	
				über die Grundwassernutzung	
				durch Brunnen in der	
				Grubenwasserprovinz Concordia der RAG AG im Hinblick auf den	
				geplanten Grubenwasseranstieg"	
02	0004	ELWAS	2223373	Einleitungsmessstelle	
02	0004	ELWAS	(Einleitstelle)	Wasserhaltung Walsum	
			(Ellilelistelle)	wassemaliung walsum	
			222407		
			(Messstelle)		
02	0005	Pegelonline.wsv.de	2770010	OW-Mengen-Pegel	
"-	3000	. ogololillilo.ilov.do	2.700.0	Duisburg Ruhrort	
02	0006	ELWAS	000309	OW-Zustands-Messstelle	
	3000			Düsseldorf-Flehe	
02	0007	ELWAS	000504	OW-Zustands-Messstelle	
				WkSt Rhein-Nord Kleve-Bimmen	
02	8000	RAG AG		Monitoringbericht Regionalgruppe	
				West	

Fortsetzung Regionale Arbeitsgruppe 02 - West

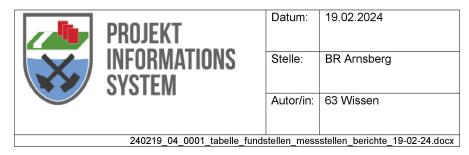
I	PIS	Fundstelle		
RG	Lfd.	Portal	Bezeichnung im Portal	
	Nr.		Nr. Beschreibung	
02	0009	RAG AG, BID	Abschlussbetriebsplan Concordia unter Tage Anlage 13 "Markscheiderisch-fachliche Standsicherheitsbeurteilung der stillgelegten Tagesöffnungen der RAG in der Wasserprovinz Concordia"	
02	0010	RAG AG, BID	Abschlussbetriebsplan Concordia unter Tage Anlage 12 "Gutachtliche Stellungnahme zur Freisetzung von Grubengas an der Tagesoberfläche und zum Monitoring im Zuge des Wasseranstiegs im Bereich der Wasserprovinz Concordia" DMT vom 17.05.2021	
02	0011	RAG AG, BID	Abschlussbetriebsplan Concordia unter Tage Anlage 09 "Gutachten zu den Bodenbewegungen im Rahmen des Grubenwasseranstiegs im Bereich der Wasserprovinz Concordia" IHS vom 31.03.2021	
02	0012	RAG AG, BID	Abschlussbetriebsplan Concordia unter Tage Anlage 11 "Stellungnahme zu Erderschütterungen im Zuge des Wasseranstiegs" RAG AG vom 21.04.2021	
02	0013	PIS	Kartendarstellung Lage und Verlauf von Unstetigkeiten	
02	0014	BR Köln – Geobasis NRW	Höhendaten der BR Köln, Geobasis NRW	
02	0015	PIS	Gutachten zu den möglichen Auswirkungen eines Grubenwasseranstiegs im Ruhrrevier auf die Schutzgüter und den daraus resultierenden Monitoringmassnahmen (IHS, 2007)	
02	0016	ELWAS	Lotungsstelle Schacht Walsum 1/2	
02	0017	ELWAS	Lotungsstelle Schacht Voerde	

Fortsetzung Regionale Arbeitsgruppe 02 - West

-	PIS		Fu	ndstelle
RG	Lfd.	Portal		Bezeichnung im Portal
	Nr.	l ortai	Nr.	Beschreibung
02	0018	ELWAS		Lotungsstelle Schacht Wehofen
02	0019	ELWAS		
02	0019	ELWAS		Lotungsstelle Schacht Pattberg 2 Lotungsstelle Schacht
02	0020	ELWAS		Friedrich-Heinrich Schacht 2
02	0021	ELWAS		Lotungsstelle Rossenray Schacht
02	0021	ELWAS		2
02	0022	ELWAS		Lotungsstelle Schacht Niederberg
				5
02	0023	ELWAS		Lotungsstelle Schacht
				Wilhelmine-Mevissen 2
02	0024	ELWAS		Lotungsstelle Schacht
				Rheinpreussen 3
02	0025	ELWAS		Lotungsstelle Schacht
				Rheinpreussen 9
02	0026	ELWAS	322088	OW-Zustands-Messstelle
				uh Walsum
02	0027	ELWAS	322076	OW-Zustands-Messstelle oh
				Walsum
02	0028	ELWAS		OW-Zustands-Messstelle
				Rhein km 792,8 oh EL Walsum
				(RAG 1)
02	0029	ELWAS		OW-Zustands-Messstelle
				Rhein km 793,0 uh EL Walsum
				(RAG 2)
02	0030	ELWAS		OW-Zustands-Messstelle
				Rhein km 793,5 uh EL Walsum
02	0031	ELWAS		(RAG 3)
02	0031	ELWAS		OW-Zustands-Messstelle
				Rhein km 793,7 uh EL Walsum in Fischruhezone (RAG 4)
02	0032	ELWAS		OW-Zustands-Messstelle
02	0032	ELWAS		Rhein km 794,1 uh EL Walsum in
				Fischruhezone Parallelwerk (RAG
				4a)
02	0033	ELWAS		OW-Zustands-Messstelle
02	0033	LLTTAG		Rhein km 794,1 uh EL Walsum
				Parallelwerk rheinseitig (RAG 4b)
02	0034	ELWAS		OW-Zustands-Messstelle
J.	3004			Rhein km 797,5 oh
				Emschermündung (RAG 5)
02	0035	ELWAS		OW-Zustands-Messstelle

Fortsetzung Regionale Arbeitsgruppe 02 - West

	PIS		Fund	stelle
RG	Lfd.	Portal	E	Bezeichnung im Portal
	Nr.		Nr.	Beschreibung
				Rhein km 802,6 uh gepl. EL
				Lohberg (RAG 6)
02	0036	ELWAS		OW-Zustands-Messstelle
				Rhein km 798,9 oh gepl. EL
				Lohberg (RAG 9)
02	0037	ELWAS		OW-Zustands-Messstelle
				Rhein km 789,9 oh EL Walsum
				(RAG 10)



FUNDSTELLENVERZEICHNIS MESSSTELLEN / BERICHTE

Stand: 16.01.2024

	PIS		Fundst	telle
RG	Lfd.	Portal	Be	zeichnung im Portal
	Nr.		Nr.	Beschreibung
03	0001	RAG BID		Machbarkeitsstudie Zentrale Wasserhaltung Lohberg, März 2020
03	0002	RAG BID		Anlage 14 Machbarkeitsstudie Zentrale Wasserhaltung Lohberg "Einfluss eines Wasseranstiegs durch Einstellung der Wasserhaltungen Zollverein, Carolinen-glück, Amalie und AV auf die PCB- und sonstige Stoffgehalte im Grubenwasser"
03	0003	RAG BID		Planerische Mitteilung zum Heben und Einleiten von Grubenwasser am Zentralen Wasserhaltungsstandort Lohberg in den Rhein
03	0004	ELWAS	xxxxx (Einleitstelle) yyyyy (Messstelle)	Einleitungsmessstelle Wasserhaltung Lohberg
03	0005	Pegelonline.wsv.de	2770010	OW-Mengen-Pegel Duisburg Ruhrort
03	0006	ELWAS	000309	OW-Zustands-Messstelle Düsseldorf-Flehe
03	0007	ELWAS	000504	OW-Zustands-Messstelle WkSt Rhein-Nord Kleve- Bimmen
03	0008	ELWAS	090000018	GW-Messstelle WRRL Chemie LGD Altlünen 01 gelöscht

	PIS		Funds	telle
RG	Lfd.	Portal	Be	ezeichnung im Portal
	Nr.		Nr.	Beschreibung
03	0009	ELWAS	090004942	GW-Messstelle WRRL
				Chemie
				LGD Brambauer 01
				gelöscht
03	0010	ELWAS	054411166	GW-Messstelle WRRL
				Chemie
				EGLV 8476195
				gelöscht
03	0011	ELWAS	059130441	GW-Messstelle WRRL-
				Chemie
				DO-Holthausen RWI26
				gelöscht
03	0012	ELWAS	059130430	GW-Messstelle WRRL-
				Chemie
				DO-Schwiergh. RWI25
				gelöscht
03	0013	ELWAS	059110168	GW-Messstelle WRRL
				Chemie
				B3 Paul-Müller-Str.
				gelöscht
03	0014	ELWAS	059110340	GW-Messstelle WRRL
				Chemie
				Hermannshöhe
				gelöscht
03	0015	ELWAS	059110302	GW-Messstelle WRRL
				Chemie
				FIEGE
				gelöscht
03	0016	ELWAS	059160093	GW-Messstelle WRRL
				Chemie
				Herne 157
			0.501	gelöscht
03	0017	ELWAS	059160068	GW-Messstelle WRRL
				Chemie
				Herne G1/21
		1		gelöscht
03	0018	PiS		Monitoringbericht
				Regionalgruppe Mitte

FUNDSTELLENVERZEICHNIS MESSSTELLEN / BERICHTE

Stand: 19.02.2024

	PIS		Fundstelle	
RG	Lfd.	Portal	Bez	eichnung im Portal
	Nr.		Nr.	Beschreibung
04	0001	www.flussgebiete.nrw.de		Hintergrundpapier Steinkohle – Begründung für die Inanspruchnahme von Ausnahmen von den Bewirtschaftungszielen – vom 11.02.2022
04	0002	ELWAS	514913	OW-Zustands-Messstelle (L23) in Heil, am Bad, Lippe
04	0003	ELWAS	222129322 (Einleitstelle) 2221573 (Messstelle)	Grubenwasser- Einleitungsstelle Wasserhaltung Ost
04	0004	ELWAS	515061	OW-Zustands-Messstelle (L23e) uh Wehr Beckinghausen, Lippe
04	0005	ELWAS	094120365	GW-Messstelle WRRL Chemie Quelle Halloh-Park gelöscht
04	0006	ELWAS	094110013	GW-Messstelle WRRL Chemie Schulze-Froning gelöscht
04	0007	ELWAS	090000018	GW-Messstelle WRRL Chemie LGD Altlünen 01 gelöscht
04	0008	ELWAS	090004942	GW-Messstelle WRRL Chemie LGD Brambauer 01 gelöscht
04	0009	ELWAS	091110907	GW-Messstelle WRRL Chemie Lünen-N.aden RWI-81 gelöscht

Fortsetzung Regionale Arbeitsgruppe 04 - Ost

	PIS		Fundstelle	•
RG	Lfd.	Portal	Bez	eichnung im Portal
	Nr.		Nr.	Beschreibung
04	0010	ELWAS	054411166	GW-Messstelle WRRL Chemie EGLV 8476195 gelöscht
04	0011	ELWAS	059130441	GW-Messstelle WRRL Chemie DO-Holthausen RWI26 gelöscht
04	0012	ELWAS	059130015	GW-Messstelle WRRL Chemie HOESCH DO BR.T4 gelöscht
04	0013	ELWAS	059130556	GW-Messstelle WRRL Chemie DO-Grevel RWI-80 gelöscht
04	0014	ELWAS	059130570	GW-Messstelle WRRL Chemie DO-Kurl RWI-2 gelöscht
04	0015	ELWAS	091112000	GW Messstelle WRRL Chemie Westick ML-6 gelöscht
04	0016	ELWAS	090000158	GW Messstelle WRRL Chemie EGLV 8473774 gelöscht
04	0017	ELWAS	091120100	GW-Messstelle WRRL Chemie Kamener Kreuz ML 22 gelöscht
04	0018	ELWAS	091121802	GW-Messstelle WRRL Chemie Altenbögge ML25 gelöscht
04	0019	ELWAS	090004930	GW-Messstelle WRRL Chemie LGD Osterbönen 01 gelöscht
04	0020	ELWAS	091131005	GW-Messstelle WRRL Chemie

Fortsetzung Regionale Arbeitsgruppe 04 - Ost

	PIS		Fundstelle	
RG	Lfd.	Portal	Bezo	eichnung im Portal
	Nr.		Nr.	Beschreibung
				Ostwennemar ML41
				gelöscht
04	0021	ELWAS	091130700	GW-Messstelle WRRL
				Chemie
				Hamm-Mark ML4
				gelöscht
04	0022	PiS		Monitoringbericht
				Regionalgruppe Ost

Regionale Arbeitsgruppe 05 - Ruhr

	PROJEKT	Datum:	19.02.2024
N. S.	INFORMATIONS System	Stelle:	BR Arnsberg
	01012	Autor/in:	63 Wissen
	240219_05_0001_tabelle_funds	stellen_mess	stellen_berichte_19-02-24.docx

FUNDSTELLENVERZEICHNIS MESSSTELLEN / BERICHTE

Stand: 19.02.2024

	PIS		Fundstelle	
RG	Lfd.	Portal	Bezeic	hnung im Portal
	Nr.		Nr.	Beschreibung
05	0001	RAG BID		Planerische Mitteilung zum Heben und Einleiten von Grubenwasser an den Zentralen Wasserhaltungsstandorten Robert Müser, Friedlicher Nachbar und Heinrich vom 28.09.2020
05	0002	www.flussgebiete.nrw.de		Hintergrundpapier Steinkohle – Begründung für die Inanspruchnahme von Ausnahmen von den Bewirtschaftungszielen – vom 11.02.2022
05	0003	Ruhrverband	2769510000100	Pegel Hattingen
05	0004	ELWAS	518906	OW-Zustands-Messstelle bei Haus Holte, Oelbach
05	0005	ELWAS	222129315 (Einleitstelle) 2221567 (Messstelle)	Grubenwasser- Einleitungsstelle Wasserhaltung Robert Müser
05	0006	ELWAS	519005	OW-Zustands-Messstelle oh KA Oelbachtal
05	0007	ELWAS	519108	OW-Zustands-Messstelle V Mdg i d Ruhr
05	0008	ELWAS	503400	OW-Zustands-Messstelle Uh Witten Lakebruecke
05	0009	ELWAS	503502	OW-Zustands-Messstelle Uh Kemnader Stausee
05	0010	ELWAS	503605	OW-Zustands-Messstelle oh Hattingen
05	0011	ELWAS	222129319 (Einleitstelle) 2221566 (Messstelle)	Grubenwasser- Einleitungsstelle Wasserhaltung Friedlicher Nachbar
05	0012	ELWAS	503514	OW-Zustands-Messstelle

Fortsetzung Regionale Arbeitsgruppe 05 - Ruhr

	PIS		Fundstelle	
RG	Lfd.	Portal	Bezei	ichnung im Portal
	Nr.		Nr.	Beschreibung
				oh Pegel Hattingen
05	0013	ELWAS	505262	OW-Zustands-Messstelle R671, Zornige Ameise bei Wasserwerk
05	0014	ELWAS	222129303 (Einleitstelle) 2221565 (Messstelle)	Grubenwasser- Einleitungsstelle Wasserhaltung Heinrich 3
05	0015	ELWAS	505020	OW-Zustands-Messstelle R22,T9, Oh Baldeneysee
05	0016	ELWAS	22221567	Zapfstelle Grubenwassersteige- leitung Wasserhaltung Friedlicher Nachbar
05	0017	ELWAS	059110168	GW-Messstelle WRRL Chemie B3 Paul-Müller-Str.
05	0018	ELWAS	059110302	GW-Messstelle WRRL Chemie FIEGE
05	0019	ELWAS	059110340	GW-Messstelle WRRL Chemie Hermannshöhe
05	0020	PiS		Monitoringbericht Regionalgruppe Ruhr

Anhang 3

Parameterkatalog tiefe GWK und Grubenwasser (Stand 01.07.2022)

Integrales Monitoring zum Grubenwasseranstieg im Steinkohlenbergbau

Stand der Entwicklung der Parameterkataloge

Vorbemerkung:

Es gelten die Definitionen der Parameterkataloge gemäß Vermerk zur Besprechung zwischen LANUV NRW, GD NRW und BR Arnsberg am 07.02.2022 in der Fassung vom 25.02.2022.

Parameter	Katalog	А		8
		Erstcharakterisierung +	Teil 1:	Teil 2:
		alle 6 Jahre	Regeluntersuchung	Regeluntersuchung
		tGWK, Kontakt-GWK,	Grundwasser	Grubenwasser
		Grubenwasser	tGWK, Kontakt-GWK	(i. d. R. vierteljährlich, kann ggf.
			(i. d. R. 1x jährlich)	auf z. B. 1x jährlich ausgedünnt
				werden)
		Stand: 01.07.2022	Stand: 01.07.2022	Stand: 01.07.2022
Temperatur		×	×	×
Leitfähigkeit		×	×	×
pH-Wert		×	×	×
Abfiltrierbare Stoffe				×
Säurekapazität pH 4.3		×	×	×
Säurekapazität pH 8.2		×	×	×
Summe Erdalkalien		×	×	×
Weitere Vorort-Para-		×	×	ı
meter (O ₂ gelöst, Dich-				
te, Färbung, Trübung,				
Förderrate, Ruhewas-				

serspiegel, abgesenk- ter Wasserspiegel, Re-			
doxspannung			
Aluminium	×	×	##
Ammonium-N	×	×	×
Antimon	×		##
Arsen	×	×	#
Arsenverbindungen, soweit untertägig eingesetzt	×	-	##
Barium	×	×	×
Blei	×	×	×
Bor	×	X	×
Bromid	×	×	×
Cadmium	×	×	×
Calcium	×	×	×
Carbonat	×	×	×
Chlorid	×	×	×
Chrom ges.	×		
Chrom VI	×		I
Cyanide	×	-	
Eisen	×	×	×
Eisen(II)-disulfid	×		##
Fluorid	×		##
Freies CO2	×	×	
H2S	×	×	80
Hydrogencarbonat	×	×	×
Jodid	×		I
Kalium	×	×	×

3

Kobalt	×	-	#
Kupfer	×	×	×
Lithium	×	:	##
Magnesium	×	×	×
Mangan	×	×	×
Methan	×	×	1
Molybdän	×		##
Natrium	×	×	×
Nickel	×	×	×
Nitrat	×	×	×
Nitrit	×	×	×
Phosphorverbindungen (n. OGewV und GrwV; ortho-Phosphat und Gesamt-P)	×	×	×
Quecksilber	×	×	#
Radium 226*	×	-	##
Radium 228*	×		##
Radioaktivität*	×	-	##
Selen	×		##
Strontium	×	×	×
Sulfat	×	×	×
Thallium	×		##
Uran	×	×	##
Vanadium	×	-	##
Zink	×	×	×
Zinn	×		##
DOC	×	×	×

4	

#	×	×	#-	#-	#	×	X	×	×	×	X	×	ſ	ſ	#-	##	#-	#-
	×	×	×	×	×	×	×	×	×	×	×	×	(×)	×	ı		ı	I
×	×	×	×	×	×	×	×	×	×	×	×	×	(x)	×	×	×	×	×
Halogenierte Kohlen- wasserstoffe, soweit untertågig eingesetzt	Kohlenwasserstoffe, gesamt	TOC	PAK (nach LAWA, 2016)**	PCB 4	PCB 10	PCB 28***	PCB 52***	PCB 101***	PCB 118***	PCB 138***	PCB 153***	PCB 180***	Biozidwirkstoffe und Pflanzenschutzmittel inol. deren relevante Abbauprodukte, soweit	LHKW (Tri-/Tetrachlor- ethen) gemäß GrwV	TCBT, PCB-Ersatz- stoffe	(Poly-)Acrylamide	Bisphenol A	Perfluorierte organ- ische Verbindungen Chemikalien (PFC bzw. PFAS)

2

Alpha-/beta-Radio-	×	1	#-
aktivität; Oder: Ener-	•		
gieaufgelöste Gamma-			
Radioaktivität*			
Richtdosis*	×	ŀ	##
Rn 222*	×	1	#-

Anmerkungen:

= Aufnahme in die Regeluntersuchungen, falls im Rahmen der Untersuchungen nach Parameterkatalog A signifikante Gehalte festgestellt werden sollten. #

ggf. weitere Radionukleide; U238, U235, Pb210, Po210, Ao227, Th228, Ra224, K40, Cs137; nähere Hinweise siehe Vermerk LANUV 09.02.2022

PAK in Summe entsprechend Anlage 1 Nr. 336 AbwV (Fluoranthen, Benzo(a)pyren, Benzo(b) fluoranthen, Benzo(ghi)perylen,

Indeno(1,2,3-cd)pyren)

Bei Sammelkastenbeprobung ist die Häufigkeit der Analyse abhängig vom Anfall aufgefangenen Schwebstoffs, nähere Einzelheiten zum Erfordernis der Untersuchung auf PCB siehe 1. Folgebericht des LANUV NRW zum PCB-Sondermessprogramm sowie Abstimmungsergebnisse zwischen RAG AG, LANUV NRW und BR Amsberg gemäß Nebenbestimmungen der wasserrechtlichen Erlaubnisse zu den ZWH-Standorten.

Anhang 4 – Teil A

Analysenergebnisse von eingeleitetem Grubenwasser

Regionale Arbeitsgruppe 1 (Ibbenbüren), Ibbenbüren-Gravenhorst -

Blatt 1 von 3

	ergebnisse der amtlichen Überw			
toffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	30.03.2023	Prognose ²⁾
901	Wasservolumen	- 1	k. A.	k. A.
1011	Wassertemperatur	°C	k. A.	k. A.
	Trübung	[-]	k. A.	k. A.
	Färbung	[-]	k. A.	k. A.
	pH-Wert	[-]	6,57	
	Redoxpotential	mV	k. A.	k. A.
	Elektrische Leitfähigkeit	μS/cm	3160	k. A.
	Lithium Natrium	µg/l	39	k. A.
	Kalium	mg/l	224 12	237 13,1
	Magnesium	mg/l mg/l	135	13,1
	Calcium in der Originalprobe	mg/l	412	452
	Strontium	µg/l	1100	1450
	Barium in der Originalprobe	mg/l	<0,03	0,01
113	Aluminium in der Originalprobe	mg/l	<0,03	k. A.
1132	Thallium in der Originalprobe	μg/l	<0,2	k. A.
1137	Zinn in der Originalprobe	mg/l	<0,001	k. A.
	Blei in der Originalprobe	mg/l	<0,03	0,01
	Vanadium in der Originalprobe	mg/l	<0,001	k. A.
	Arsen	μg/l	<0,001	0,5
	Antimon in der Originalprobe	mg/l	<0,001	k. A.
	Blei 210	mBq/L	k. A.	k. A.
	Chrom in der Originalprobe	mg/l	<0,03	0,001
	Chrom (VI) Molybdän	mg/l	0,02 <0,001	k. A. k. A.
	Thorium 228	μg/l mBq/l	k. A.	k. A.
	Kupfer in der Originalprobe	mg/l	<0,03	0,0005
	Zink in der Originalprobe	mg/l	<0,03	0,000
	Cadmium in der Originalprobe	mg/l	<0,005	0,00005
	Quecksilber in der Originalprobe	mg/l	<0,0002	k. A.
1167	Uran, in der Originalprobe	μg/l	0,3	k. A.
1168	Radon 222	mBq/L	k. A.	k. A.
117	Mangan in der Originalprobe	mg/l	5,3	1,899
1173	Radium 226	mBq/L	k. A.	k. A.
	Radium 228	mBq/L	k. A.	k. A.
	Uran 235	mBq/L	k. A.	k. A.
	7 Uran 238	mBq/L	k. A.	k. A.
	Radium 224	mBq/L	k. A.	k. A.
	Eisen in der Originalprobe Kobalt	mg/l	0,85	0,6
	Nickel in der Originalprobe	µg/l	15 <0,03	k. A. 0,1925
	R Kalium 40	mg/l mBq/L	k. A.	0, 1925 k. A.
	Cäsium 137	mBq/L	k. A.	k. A.
	Polonium 210	mBq/L	k. A.	k. A.
	Bor	mg/l	0,22	0,12
	Selen, in der Originalprobe	µg/l	<1	k. A.
1224	Hydrogencarbonat	mg/l	137	k. A.
	Cyanid, gesamt, in der Originalprobe	mg/l	k. A.	k. A.
1244	Nitrat	mg/l	1	0,99
	Nitratstickstoff (NO3-N)	mg/l	<0,3	k. A
	Nitrit	mg/l	0,031	0,01
	Nitritstickstoff (NO-2-N)	mg/l	0,0094	k. A
	Ammoniumstickstoff (NH4-N)	mg/l	0,49	0,64
	Gesamt-Phosphat	mg/l	k. A.	0,05
	Phosphor, gesamt, in der Originalprobe	mg/l	<0,5	k. A.
	Ortho-Phosphat	mg/l	k. A.	k. A.
1264	Orthophosphat-Phosphor Phosphorverbindungen als Phosphor, gesamt, in	mg/l	k. A.	k. A.
1269	der Originalprobe	mg/l	<0,5	k. A.
1281	Sauerstoff, in der Originalprobe	mg/l	k. A.	k. A.
	Sauerstoffsättigungsindex, in der Originalprobe	%	k. A.	k. A.
	Sulfid, leicht freisetzbar	mg/l	k. A.	k. A.
	Sulfid	mg/l	<0,005	k. A.
1313	Sulfat	mg/l	1800	1811
	Fluorid, gesamt, in der Originalprobe	mg/l	0,4	k. A.
	Bromid	mg/l	<2	0,5
	⁷ Jodid	mg/l	0,011	k. A.
1331	Chlorid	mg/l	151	169

Regionale Arbeitsgruppe 1 (Ibbenbüren), Ibbenbüren-Gravenhorst -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023

Blatt 2 von 3

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	30.03.2023	Prognose ²⁾
1441	Abfiltrierbare Stoffe (suspendierte Stoffe) in der Originalprobe	mg/l	4	k. <i>A</i>
1472	Säurekapazität bis pH 4,3	mmol/l	2,25	k. <i>F</i>
	Basekapazität bis pH 4,3	mmol/l	k. A.	k. <i>F</i>
	Säurekapazität bis pH 8,2	mmol/l	<0,05	k. A
	Basekapazität bis pH 8,2	mmol/l	k. A.	k. <i>F</i>
1484		mmol/l	k. A.	k. <i>F</i>
1521		mg/l	k. A.	k. <i>F</i>
1523	Organischer gebundener Kohlenstoff, gesamt (TOC), in der Originalprobe	mg/l	k. A.	k. <i>A</i>
1552		mg/l	<0,1	k. <i>F</i>
	Gesamt-Alpha-Aktivitätskonzentration	mBq/L	k. A.	k. /
1803	,	mBq/L	k. A.	k. /
	Rest-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. /
	Richtdosis (Trinkwasser)	mSv/a	k. A.	k. /
	Trichlorethen	μg/l	0,2	k. /
2021		μg/l	k. A.	k. /
2045	LHKW, Summe gem. AbwV Anhänge 9, 25, 40			
0040	und 54 als Cl	µg/l	0,2	k. /
	Benzol DCB 28	µg/l	k. A.	k. /
	PCB-28 PCB-28	mg/kg	k. A.	k. /
	PCB-52	μg/l	<0,01	k. /
	PCB-52 PCB-52	µg/l	<0,01 k. A.	K. /
	PCB-101	mg/kg		
	PCB-101	mg/kg	k. A.	k. /
	PCB-138	µg/l	<0,01	
	PCB-138	mg/kg	k. A.	k. /
	PCB-153	µg/l	<0,01	k. /
	PCB-153	mg/kg	k. A.	
	PCB-180	μg/l	<0,01	k. /
	PCB-180	µg/l	<0,01	k. /
	PCB-160	mg/kg	k. A.	k. /
	PCB-118	µg/l	k. A.	k. /
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	mg/kg	k. A.	k. /
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	mg/kg	k. A.	
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	μg/l mg/kg	k. A. k. A.	k. /
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36		k. A.	k
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	µg/l	k. A.	k. /
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	μg/l mg/kg	k. A.	k. /
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	mg/kg µg/l	k. A.	k. /
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21		k. A.	k. /
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	mg/kg	k. A.	k
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	mg/kg	k. A.	k. /
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	µg/l	k. A.	k
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	mg/kg	k. A.	k
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	μg/l μg/l	k. A.	k
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	mg/kg	k. A.	k. /
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52		k. A.	k. /
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	μg/l mg/kg	k. A. k. A.	k. /
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	µg/l	k. A.	K. /
	2',3,4,4'-Tetraci-6-me-dm:TCBT 74		k. A. k. A.	k. /
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	mg/kg mg/kg	k. A. k. A.	k. /
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	µg/I	k. A.	k. /
	Fluoranthen		K. A. <0,01	k
	Benzo(b)fluoranthen	μg/l μg/l	<0,01	k. <i>i</i>
	Benzo(k)fluoranthen	μg/I	<0,01	k
	Naphthalin	μg/I μg/I	k. A.	k. <i>i</i>
	1-Methylnaphthalin	mg/l	k. A.	k. /
	2-Methylnaphtalin	mg/l	k. A.	k. <i>i</i>
	Benzo(ghi)perylen	µg/l	<0,01	k. /
	Pyren	µg/l	<0,01	k
	Benzo(a)pyren	μg/I μg/I	<0,01	k. <i>i</i>
	Chrysen	μg/I	<0,01	k. <i>i</i>
	Dibenz(ah)anthracen	μg/I	<0,01	k. <i>i</i>
	Indeno(1,2,3-cd)pyren	μg/I μg/I	<0,01	k. /
2335		μg/I	<0,01	k. /
2336		μg/I	<0,01	k. /
	Phenanthren	μg/I μg/I	<0,01	k. /
		M9/1	٠٥,01	r. /

Bericht des Jahres 2024

Regionale Arbeitsgruppe 1 (Ibbenbüren), Ibbenbüren-Gravenhorst -Analvsenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023

Blatt 3 von 3

offnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	30.03.2023	Prognose ²⁾
2346	Acenaphthylen	μg/l	<0,01	k. A
2347	Acenaphthen	μg/l	<0,01	k. A
2350	Polycylische aromatische Kohlenwasserstoffe (PAK) in der Originalprobe (Fluoranthen, Benzo(a)pyren, Benzo(b)Fluoranthen, Benzo(k)fluoranthen, Benzo(ghi)perylen,			
	Indeno(1,2,3-cd)pyren)	μg/l 	k. A.	k. A
	Toluol	μg/l	k. A.	k. A
	o-Xylol	μg/l	k. A.	k. A
	Ethylbenzol	μg/l	k. A.	k. <i>F</i>
	PCB-10 PCB-10	μg/l	k. A.	k. <i>F</i>
		mg/kg	k. A.	k. /
	Bisphenol A	mg/l	k. A.	k. A
	Perfluorbutansäure	μg/l	<0,1	k. <i>F</i>
	Perfluorpentansäure	μg/l	<0,1	k. /
	Perfluorhexansäure	μg/l	<0,1	k. /
	Perfluorheptansäure	μg/l	<0,1	k. /
	Perfluornonansäure	μg/l	<0,1	k. /
	Perfluordekansäure	μg/l	<0,1	k. /
	Perfluorundekansäure	μg/l	<0,2	k. /
	Perfluordodekansäure	μg/l	<0,1	k. /
2896	m-Xylol und p-Xylol	µg/l	k. A.	k
2913	XYLOL)	μg/l	k. A.	k. <i>i</i>
	Acrylamid	μg/l	0,6	k. /
	BTXE	μg/l	k. A.	k. /
	Methan	mg/l	k. A.	k. <i>i</i>
	Freies CO2	mmol/l	k. A.	k. /
	Perfluoroktansulfonsäure Isomeren	μg/l	<0,1	k
	Perfluoroktansäure Isomeren	μg/l	<0,1	k
	Perfluorbutansulfonsäre Isomeren	μg/l	<0,1	k
	Perfluorhexansulfonsäure Isomeren	μg/l	<0,1	k
	Perfluordecylsulfonsäure	μg/l	k. A.	k
	H4-Perfluoroctylsulfonsäure	μg/l	k. A.	k
	1H,1H,2H,2H-Perfluorhexansulfonsäure	μg/l	k. A.	k
	Perfluorheptansulfonsäure	μg/l	k. A.	k
4105	1H, 1H, 2H, 2H-Perfluordecansulfonsäure	μg/l	<0,1	k
4050	Summe PAK TVO (SUMME: Benzo-(b)-			
4300	fluoranthen, Benzo-(k)-fluoranthen, Benzo-(ghi)- perylen und Indeno-(1,2,3-cd)-pyren)	μg/l	k A	k. /
4357	Summe PAK EPA	µg/l	k. A.	k. /
	Summe PAK EPA ohne Naphthalin	µg/l	k. A.	k. /
4471	•	µg/l	k. A.	k. /
	Perfluorpentansulfonsäure inkl. Isomere	µg/l	k. A.	k. /
	Perfluornonansulfonsäure inkl. Isomere		k. A.	k. /
	Perfluorundekansulfonsäure inkl. Isomere	μg/l μg/l	k. A.	K. /
	Perfluordodekansulfonsäure inkl. Isomere		<0,5	K. /
	Perfluortridekansulfonsäure inkl. Isomere	µg/l	k. A.	
	PCB-4	µg/l	k. A.	k. /
	PCB-4	mg/kg		
	Summe PCB-4 + PCB-10	μg/l μg/l	k. A. k. A.	k. /

^{1) =} Um ein stets einheitliches Erscheinungsbild und spätere Vergleichbarkeit mit früheren Berichtsperioden zu ermöglichen, sind sämtliche Parameter des Parameterkatalogs A (Maximalumfang) aufgeführt. Soweit jeweils nur Teilprogramme bei der Probenahme absolviert wurden, ist in der jeweils für den Probenahmetermin einschlägigen Spalte zu den nicht untersuchten Parametern "k. A." eingetragen worden.

²⁾ = keine Prognose vorhanden, angegeben ist Mittelwert 2010 - 2016 laut Erlaubnisantrag 22.09.2020

Regionale Arbeitsgruppe 1 (Ibbenbüren), Ibbenbüren-Gravenhorst -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024

Blatt 1 von 3

-	ergebnisse der amdichen oberw			_	
Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	27.06.2024	16.12.2024	Prognose ²⁾
	Wasservolumen	ı	k. A.	k. A.	k. /
	Wassertemperatur	°C	k. A.	k. A.	k. <i>A</i>
1035	Trübung	[-]	k. A.	k. A.	k. /
1044	Färbung	[-]	k. A.	k. A.	k. /
1061	pH-Wert	[-]	8,17	7,81	
1072	Redoxpotential	mV	k. A.	k. A.	k
1082	Elektrische Leitfähigkeit	μS/cm	3040	3040	k. /
1111	Lithium	μg/l	520	490	k
1112	Natrium	mg/l	243	224	2:
1113	Kalium	mg/l	11	11	13
1121	Magnesium	mg/l	129	121	1;
1122	Calcium in der Originalprobe	mg/l	385	367	4
	Strontium	µg/l	1,2	1,1	1,
1124	Barium in der Originalprobe	mg/l	<0.03	0,03	0,0
	Aluminium in der Originalprobe	mg/l	0,03	<0,03	k.
	Thallium in der Originalprobe	μg/l	<0,2	<0,2	k
1137			<0,001	<0,001	k
1138	5 .	mg/l		-	
	Blei in der Originalprobe	mg/l	<0,03	<0,03	0,0
1141	Vanadium in der Originalprobe	mg/l	<0,001	<0,001	k.
		µg/l	<1	<1	0
	Antimon in der Originalprobe	mg/l	<0,001	<0,001	k.
	Blei 210	mBq/L	k. A.	k. A.	k.
1151	Chrom in der Originalprobe	mg/l	<0,03	<0,03	0,0
1154	Chrom (VI)	mg/l	<0,01	<0,01	k.
1155	Molybdän	µg/l	<1	<0,001	k.
1157	Thorium 228	mBq/l	k. A.	k. A.	k.
1161	Kupfer in der Originalprobe	mg/l	<0.03	< 0.03	0,00
	Zink in der Originalprobe	mg/l	<0,03	<0,03	0,
1165	Cadmium in der Originalprobe	mg/l	<0,005	<0,005	0.000
	<u> </u>	mg/l	<0,0002	<0,0002	k.
	ŭ .	_	0,0002	0,3	k.
	Radon 222	µg/l			
		mBq/L	k. A.	k. A.	k
	Mangan in der Originalprobe	mg/l	1,2	2	1,8
	Radium 226	mBq/L	k. A.	k. A.	k.
	Radium 228	mBq/L	k. A.	k. A.	k
	Uran 235	mBq/L	k. A.	k. A.	k.
	Uran 238	mBq/L	k. A.	k. A.	k
1178	Radium 224	mBq/L	k. A.	k. A.	k
1182	Eisen in der Originalprobe	mg/l	0,88	0,71	C
1186	Kobalt	μg/l	1	2	k.
1188	Nickel in der Originalprobe	mg/l	<0,03	<0,03	0,19
1193	Kalium 40	mBq/L	k. A.	k. A.	k.
1195	Cäsium 137	mBq/L	k. A.	k. A.	k.
	Polonium 210	mBq/L	k. A.	k. A.	k.
	Bor	mg/l	0,1	0,12	0,
	Selen, in der Originalprobe		<1	0, 12 <1	
	Hydrogencarbonat	μg/l mg/l			k.
	, ,	mg/l	107	118	k.
	Cyanid, gesamt, in der Originalprobe	mg/l	k. A.	k. A.	k.
	Nitrat	mg/l	1	1	0,
	Nitratstickstoff (NO3-N)	mg/l	<0,3	<0,3	k.
1246		mg/l	0,026	0,019	0,
1247	Nitritstickstoff (NO-2-N)	mg/l	0,0079	0,0058	k.
1249	Ammoniumstickstoff (NH4-N)	mg/l	0,33	0,48	0,
1261	Gesamt-Phosphat	mg/l	<0,04	0,06	0,
1262	Phosphor, gesamt, in der Originalprobe	mg/l	<0,5	<0,5	k.
1263		mg/l	<0.04	<0,04	k.
1264		mg/l	<0,02	<0,02	k.
	Phosphorverbindungen als Phosphor, gesamt, in	9"	-5,02	3,02	K.
1269	der Originalprobe	mg/l	<0,02	<0,02	k.
1281	Sauerstoff, in der Originalprobe	mg/l	k. A.	k. A.	k.
1283	Sauerstoffsättigungsindex, in der Originalprobe	%	k. A.	k. A.	k.
	Sulfid, leicht freisetzbar		k. A.	k. A.	k.
		mg/l			
1311	Sulfid	mg/l	k. A.	k. A.	k
40.0	Sulfat	mg/l	1730	1540	18
1313				0.4	k.
1321	Fluorid, gesamt, in der Originalprobe	mg/l	0,3	0,4	
1321 1324	Bromid	mg/l mg/l	0,3 <2	<2	C
1321					

Bericht des Jahres 2024

Regionale Arbeitsgruppe 1 (Ibbenbüren), Ibbenbüren-Gravenhorst -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024

Blatt 2 von 3

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	27.06.2024	16.12.2024	Prognose ²⁾
1441	Abfiltrierbare Stoffe (suspendierte Stoffe) in der	"			
1472	Originalprobe	mg/l	k. A.	k. A.	k. A
	Säurekapazität bis pH 4,3 Basekapazität bis pH 4,3	mmol/l mmol/l	1,76 k. A.	1,93 k. A.	k. <i>F</i>
	Säurekapazität bis pH 8,2	mmol/I	<0,05	<0,05	k. <i>F</i>
	Basekapazität bis pH 8,2	mmol/I	k. A.	k. A.	k. <i>F</i>
		mmol/I	k. A.	k. A.	k. <i>F</i>
	Organischer Kohlenstoff, gelöst	mg/l	k. A.	k. A.	k. <i>F</i>
	Organischer gebundener Kohlenstoff, gesamt	···g··			
1523	(TOC), in der Originalprobe	mg/l	4	2	k. <i>A</i>
1552	Kohlenwasserstoffe, gesamt, in der Originalprobe	mg/l	<0,1	<0,1	k. <i>F</i>
1801	Gesamt-Alpha-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. /
	Gesamt-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. /
1805	Rest-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. /
	Richtdosis (Trinkwasser)	mSv/a	k. A.	k. A.	k. A
	Trichlorethen	µg/l	<0,1	1,2	k. /
2021	Tetrachlorethen LHKW, Summe gem. AbwV Anhänge 9, 25, 40	µg/l	<0,1	3,4	k. /
2045	und 54 als Cl	µg/l	k. A.	4,6	k. <i>A</i>
2048	Benzol	µg/l	k. A.	k. A.	k. <i>F</i>
	PCB-28	mg/kg	k. A.	k. A.	k. /
	PCB-28	µg/l	<0,01	<0,01	k. /
	PCB-52	µg/l	<0,01	<0,01	k. /
	PCB-52	mg/kg	k. A.	k. A.	k. /
2073	PCB-101	mg/kg	k. A.	k. A.	k. /
2073	PCB-101	μg/l	<0,01	<0,01	k. /
2074	PCB-138	mg/kg	k. A.	k. A.	k. /
2074	PCB-138	µg/l	<0,01	<0,01	k. /
2076	PCB-153	mg/kg	k. A.	k. A.	k. /
2076	PCB-153	μg/l	<0,01	<0,01	k. /
2077	PCB-180	μg/l	<0,01	<0,01	k. /
2077	PCB-180	mg/kg	k. A.	k. A.	k. /
2079	PCB-118	μg/l	<0,01	<0,01	k. /
2079	PCB-118	mg/kg	k. A.	k. A.	k. /
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	mg/kg	k. A.	k. A.	k. /
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	μg/l	k. A.	k. A.	k. /
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	mg/kg	k. A.	k. A.	k. /
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	μg/l	k. A.	k. A.	k. /
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	μg/l	k. A.	k. A.	k. /
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	mg/kg	k. A.	k. A.	k. <i>i</i>
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	µg/l	k. A.	k. A.	k
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	mg/kg	k. A.	k. A.	k
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	mg/kg	k. A.	k. A.	k
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	µg/l	k. A.	k. A.	k. /
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	mg/kg	k. A.	k. A.	k. /
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27 2,2',4,6'-Tetracl-5-me-dm:TCBT 28	µg/l	k. A.	k. A.	k. /
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	μg/l	k. A.	k. A.	k
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	mg/kg	k. A.	k. A.	k
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	μg/l mg/kg	k. A. k. A.	k. A. k. A.	k. <i>i</i>
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	µg/l	k. A.	k. A.	k. /
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	mg/kg	k. A.	k. A.	k. <i>i</i>
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	mg/kg	k. A.	k. A.	k. <i>i</i>
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	µg/l	k. A.	k. A.	k
	Fluoranthen	μg/l	<0,01	0,05	k
	Benzo(b)fluoranthen	μg/l	<0,01	<0,01	k
	Benzo(k)fluoranthen	μg/l	<0,01	<0,01	k
	Naphthalin	μg/l	<0,01	<0,01	k.
	1-Methylnaphthalin	mg/l	k. A.	<0,01	k
2307	2-Methylnaphtalin	mg/l	k. A.	<0,01	k.
	Benzo(ghi)perylen	μg/l	<0,01	<0,01	k.
2319	Pyren	μg/l	<0,01	0,04	k.
2320	Benzo(a)pyren	μg/l	<0,01	<0,01	k.
2324	Chrysen	μg/l	<0,01	<0,01	k.
2325	Dibenz(ah)anthracen	μg/l	<0,01	<0,01	k.
2330	Indeno(1,2,3-cd)pyren	μg/l	<0,01	<0,01	k.
2335	Anthracen	μg/l	<0,01	<0,01	k.
2336	Benzo(a)anthracen	μg/l	<0,01	<0,01	k.
2340	Phenanthren	μg/l	<0,01	0,03	k.
00.45	Fluoren	µg/l	<0,01	<0,01	k

Blatt 3 von 3

Regionale Arbeitsgruppe 1 (Ibbenbüren), Ibbenbüren-Gravenhorst -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	27.06.2024	16.12.2024	Prognose ²⁾
2346	Acenaphthylen	μg/l	<0,01	<0,01	k. /
2347	Acenaphthen	μg/l	<0,01	<0,01	k. /
2350	Polycylische aromatische Kohlenwasserstoffe (PAK) in der Originalprobe (Fluoranthen, Benzo(a)pyren, Benzo(b)Fluoranthen, Benzo(k)fluoranthen, Benzo(ghi)perylen,	13		3,32	
	Indeno(1,2,3-cd)pyren)	μg/l	k. A.	k. A.	k. A
2400	Toluol	μg/l	k. A.	k. A.	k
2410	o-Xylol	μg/l	k. A.	k. A.	k.
2415	Ethylbenzol	μg/l	<1	<1	k.
2426	PCB-10	μg/l	k. A.	k. A.	k.
2426	PCB-10	mg/kg	k. A.	k. A.	k.
2669	Bisphenol A	mg/l	k. A.	<0,01	k.
2853	Perfluorbutansäure	μg/l	<0,1	<0,1	k.
2854	Perfluorpentansäure	μg/l	<0,1	<0,1	k.
2855	Perfluorhexansäure	μg/l	<0,1	<0,1	k.
2856	Perfluorheptansäure	μg/l	<0,1	<0,1	k.
2857	Perfluornonansäure	μg/l	<0,1	<0,1	k.
2858	Perfluordekansäure	μg/l	<0,1	<0,1	k.
2859	Perfluorundekansäure	μg/l	<0,2	<0,2	k.
2860	Perfluordodekansäure	μg/l	<0,1	<0,1	k.
2896	m-Xylol und p-Xylol	μg/l	k. A.	k. A.	k
2913	XYLOL (SUMME DER GEHALTE AN O,M,P- XYLOL)	μg/l	k. A.	k. A.	k.
2949	Acrylamid	μg/l	0,2	0,4	k.
2950	BTXE	µg/l	k. A.	k. A.	k
3001	Methan	mg/l	<0,01	<0,01	k
3002	Freies CO2	mmol/l	k. A.	k. A.	k
4007	Perfluoroktansulfonsäure Isomeren	μg/l	<0,1	<0,1	k
4008	Perfluoroktansäure Isomeren	μg/l	<0,1	<0,1	k
4009	Perfluorbutansulfonsäre Isomeren	μg/l	<0,1	<0,1	k.
4010	Perfluorhexansulfonsäure Isomeren	μg/l	<0,1	<0,1	k
4084	Perfluordecylsulfonsäure	μg/l	k. A.	k. A.	k
4089	H4-Perfluoroctylsulfonsäure	μg/l	k. A.	k. A.	k
4103	1H,1H,2H,2H-Perfluorhexansulfonsäure	μg/l	<0,1	<0,1	k
4104	Perfluorheptansulfonsäure	μg/l	<0,1	<0,1	k
4105	1H, 1H, 2H, 2H-Perfluordecansulfonsäure	μg/l	<0,2	<0,2	k
4356	Summe PAK TVO (SUMME: Benzo-(b)-fluoranthen, Benzo-(k)-fluoranthen, Benzo-(ghi)-			,	
	perylen und Indeno-(1,2,3-cd)-pyren)	μg/l	k. A.	k. A.	k
4357	Summe PAK EPA	μg/l	k. A.	0,12	k
	Summe PAK EPA ohne Naphthalin	μg/l	k. A.	k. A.	k.
4471	Perfluortridecansäure	μg/l	<0,5	<0,5	k.
	Perfluorpentansulfonsäure inkl. Isomere	μg/l	<0,1	<0,1	k.
4561	Perfluornonansulfonsäure inkl. Isomere	μg/l	<0,5	<0,5	k.
4562	Perfluorundekansulfonsäure inkl. Isomere	μg/l	<0,5	<0,5	k.
	Perfluordodekansulfonsäure inkl. Isomere	μg/l	<0,5	<0,5	k
	Perfluortridekansulfonsäure inkl. Isomere	μg/l	<0,5	<0,5	k
	PCB-4	mg/kg	k. A.	k. A.	k.
	PCB-4	μg/l	k. A.	k. A.	k.
	Summe PCB-4 + PCB-10	μg/l	k. A.	k. A.	k.
4576	Summe PCB-4 + PCB-10	mg/kg	k. A.	k. A.	k

^{1) =} Um ein stets einheitliches Erscheinungsbild und spätere Vergleichbarkeit mit früheren Berichtsperioden zu ermöglichen, sind sämtliche Parameter des Parameterkatalogs A (Maximalumfang) aufgeführt. Soweit jeweils nur Teilprogramme bei der Probenahme absolviert wurden, ist in der jeweils für den Probenahmetermin einschlägigen Spalte zu den nicht untersuchten Parametern "k. A." eingetragen worden

 $^{^{2)}}$ = keine Prognose vorhanden, angegeben ist Mittelwert 2010 - 2016 laut Erlaubnisantrag 22.09.2020

Bericht des Jahres 2024

Regionale Arbeitsgruppe 2 (West), Walsum -

Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023 Blatt 1 von 3

analysen	energebnisse der amtlichen Uberwachung der Wasserhaltungen im Jahr 2023							
Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	20.03.2023	06.06.2023	16.08.2023	12.12.2023	Prognose ²⁾	Prognose
901	Wasservolumen	ı	k. A.	k.				
	Wassertemperatur	°C	k. A.	k. A.	k. A.	k. A.	35	3!
	Trübung	[-]	k. A.	k.				
	Färbung	[-]	k. A.	k.				
	pH-Wert	[-]	7,08	7,14	7,02	6,95	6,44	6,
	Redoxpotential	mV c./am	k. A.	k. A.	k. A.	k. A.	k. A. k. A.	<u>k.</u>
	Elektrische Leitfähigkeit Lithium	μS/cm μg/l	84500 k. A.	85800 k. A.	87100 k. A.	88300 k. A.	k. A.	k. k.
	Natrium	mg/l	21800	21900	23900	21700	18833	180
	Kalium	mg/l	267	271	291	3,2	263	101
	Magnesium	mg/l	443	444	516	459	327	
	Calcium in der Originalprobe	mg/l	778	766	852	752	700	
	Strontium	μg/l	30	30	32	30	26,7	
1124	Barium in der Originalprobe	mg/l	1,6	1,7	0,96	1,2	11,3	4
	Aluminium in der Originalprobe	mg/l	<0,03	k. A.	k. A.	k. A.	k. A.	k
1132	Thallium in der Originalprobe	μg/l	k. A.	k				
1137	Zinn in der Originalprobe	mg/l	k. A.	k				
1138	Blei in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,01	0,
1141	<u> </u>	mg/l	k. A.	k				
	Arsen	μg/l	<1	<1	<1	<1	k. A.	k
	Antimon in der Originalprobe	mg/l	k. A.	ŀ				
	Blei 210	mBq/L	k. A.	- 1				
	Chrom in der Originalprobe	mg/l	k. A.	<0,03	<0,03	<0,03	0,004	0
	Chrom (VI)	mg/l	k. A.					
	Molybdän	μg/l	k. A.					
	Thorium 228	mBq/I	k. A.					
	Kupfer in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,024	0
	Zink in der Originalprobe	mg/l	0,16	0,21	0,08	0,08	0,2	
	Cadmium in der Originalprobe	mg/l	<0,005	<0,005	<0,005	<0,005	0,0019	0,
	Quecksilber in der Originalprobe	mg/l	<0,0002	k. A.	k. A.	k. A.	k. A.	
	Uran, in der Originalprobe	μg/l	<0,2	k. A.	k. A.	k. A.	k. A.	
	Radon 222	mBq/L	k. A.					
	Mangan in der Originalprobe	mg/l	1,1	1	0,78	0,96	1,28	
	Radium 226 Radium 228	mBq/L	k. A.					
		mBq/L	k. A. k. A.					
	Uran 235 Uran 238	mBq/L mBq/L	k. A.	k. A.	k. A.	k. A. k. A.	k. A.	
	Radium 224	mBq/L	k. A.					
	Eisen in der Originalprobe	mg/l	9,1	8,7	13	7,7	12,8	
	Kobalt	μg/l	k. A.					
	Nickel in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,014	C
	Kalium 40	mBq/L	k. A.					
	Cäsium 137	mBq/L	k. A.					
	Polonium 210	mBq/L	k. A.					
		mg/l	2,5	2,7	2,7	2,4	2,63	
	Selen, in der Originalprobe	μg/l	k. A.					
	Hydrogencarbonat	mg/l	102	99	90	98	212	
	Cyanid, gesamt, in der Originalprobe	mg/l	k. A.	<0,01	<0,01	<0,01	k. A.	
	Nitrat	mg/l	<1	<1	<1	<1	1,7	
	Nitratstickstoff (NO3-N)	mg/l	<0,3	<0,3	<0,3	<0,3	k. A.	
	Nitrit	mg/l	0,006	<0,005	0,015	0,007	0,024	C
1247	Nitritstickstoff (NO-2-N)	mg/l	<0,005	<0,005	<0,005	<0,005	k. A.	
	Ammoniumstickstoff (NH4-N)	mg/l	12	13	13	13	15,9	
1261	Gesamt-Phosphat	mg/l	k. A.	k. A.	k. A.	k. A.	0,04	
1262	Phosphor, gesamt, in der Originalprobe	mg/l	<0,5	<0,5	<0,5	<0,5	k. A.	
	Ortho-Phosphat	mg/l	k. A.					
	Orthophosphat-Phosphor	mg/l	k. A.					
	Phosphorverbindungen als Phosphor, gesamt,							
1269	in der Originalprobe	mg/l	k. A.					
1281	Sauerstoff, in der Originalprobe	mg/l	k. A.					
4303								
1283	Sauerstoffsättigungsindex, in der Originalprobe	%	k. A.					
1309	Sulfid, leicht freisetzbar	mg/l	k. A.					
1311	Sulfid	mg/l	<0,005	k. A.	k. A.	k. A.	0	
1313	Sulfat	mg/l	26	506	524	530	333	
1321	Fluorid, gesamt, in der Originalprobe	mg/l	k. A.					
1324	Bromid	mg/l	3	52	46	43	47,8	
		mg/l	k. A.					
1331	Chlorid	mg/l	36800	35600	37400	37100	31191	3

Regionale Arbeitsgruppe 2 (West), Walsum -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023

Blatt 2 von 3

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	20.03.2023	06.06.2023	16.08.2023	12.12.2023	Prognose ²⁾	Prognose ³⁾
4444	Abfiltrierbare Stoffe (suspendierte Stoffe) in							
1441	der Originalprobe	mg/l	k. A.	22	33	21	3,58	2,
	Säurekapazität bis pH 4,3	mmol/l	1,67	1,62	1,42	1,61	k. A.	k. A
	Basekapazität bis pH 4,3 Säurekapazität bis pH 8,2	mmol/l mmol/l	k. A. <0,05	k. A. <0,05	k. A. <0,05	k. A. <0,05	k. A. k. A.	k. A k. A
	Basekapazität bis pH 8,2	mmol/l	k. A.	k. A				
	Carbonathärte	mmol/l	k. A.	k. A				
	Organischer Kohlenstoff, gelöst	mg/l	k. A.	k. A				
1523	Organischer gebundener Kohlenstoff, gesamt (TOC), in der Originalprobe	mg/l	11	8	30	<2	k. A.	k. A
1552	Kohlenwasserstoffe, gesamt, in der Originalprobe	mg/l	<0,1	<0,1	<0,1	<0,1	k. A.	k. A
	Gesamt-Alpha-Aktivitätskonzentration	mBq/L	k. A.	k. A				
	Gesamt-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A				
	Rest-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A				
	Richtdosis (Trinkwasser) Trichlorethen	mSv/a μg/l	k. A. <0,1	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A
	Tetrachlorethen	μg/l	<0,1	k. A.	k. A.	k. A.	k. A.	k. A.
2045	LHKW, Summe gem. AbwV Anhänge 9, 25, 40	Po/·						
	und 54 als Cl	μg/l	k. A.	k. A				
	Benzol	μg/l	k. A.	k. A.				
	PCB-28	mg/kg	k. A.	k. A.				
	PCB-28 PCB-52	μg/l μg/l	<0,01 <0,01	k. A. k. A.	k. A. k. A.	k. A. k. A.	0,00187 0,001591	0,000581
	PCB-52	mg/kg	k. A.	k. A.	k. A.	k. A.	0,001391 k. A.	k. A.
	PCB-101	mg/kg	k. A.	k. A.				
	PCB-101	μg/l	<0,01	k. A.	k. A.	k. A.	0,000327	0,000163
	PCB-138	mg/kg	k. A.	k. A				
2074	PCB-138	μg/l	<0,01	k. A.	k. A.	k. A.	0,000124	0,000063
	PCB-153	mg/kg	k. A.	k. A				
	PCB-153	μg/l	<0,01	k. A.	k. A.	k. A.	0,000131	0,000066
	PCB-180	μg/l	<0,01	k. A.	k. A.	k. A.	0,000044	0,000021
	PCB-180 PCB-118	mg/kg μg/l	k. A. <0,01	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. 0,000224	0,00011
	PCB-118	mg/kg	k. A.	k. A.				
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	mg/kg	k. A.	k. A				
2181	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	μg/l	k. A.	k. A				
2182	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	mg/kg	k. A.	k. A				
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	μg/l	k. A.	k. A.				
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	μg/l	k. A.	k. A.				
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87 2,2',4,4'-Tetracl-3-me-dm:TCBT 21	mg/kg μg/l	k. A. k. A.	k. A.				
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	mg/kg	k. A.	k. A.				
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	mg/kg	k. A.	k. A.				
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	μg/l	k. A.	k. A				
2187	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	mg/kg	k. A.	k. A				
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	μg/l	k. A.	k. A				
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	μg/l	k. A.	k. A.				
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28 2,3',4,4'-Tetracl-5-me-dm:TCBT 52	mg/kg	k. A. k. A.	k. A.				
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	μg/l mg/kg	k. A.	k. A.				
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	μg/l	k. A.	k. A.				
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	mg/kg	k. A.	k. A				
2195	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	mg/kg	k. A.	k. A.				
2195	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	μg/l	k. A.	k. A				
	Fluoranthen	μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A
	Benzo(b)fluoranthen	μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A
	Benzo(k)fluoranthen Naphthalin	μg/l μg/l	<0,01 0,03	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A.
	1-Methylnaphthalin	mg/l	k. A.	k. A.				
	2-Methylnaphtalin	mg/l	k. A.	k. A.				
	Benzo(ghi)perylen	μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A
2319	Pyren	μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A
	Benzo(a)pyren	μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A
	Chrysen	μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A
	Dibenz(ah)anthracen	μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A
	Indeno(1,2,3-cd)pyren	μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A
	Anthracen Benzo(a)anthracen	μg/l μg/l	<0,01 <0,01	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A.
	Phenanthren	μg/I μg/I	<0,01	k. A.	k. A.	k. A.	k. A.	k. A.
2540		μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A.

Bericht des Jahres 2024

Regionale Arbeitsgruppe 2 (West), Walsum -

alvegnargabnissa dar amtlichen Überwachung der Wasserhaltungen im Jahr 2023

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	20.03.2023	06.06.2023	16.08.2023	12.12.2023	Prognose ²⁾	Prognose ³⁾
2346	Acenaphthylen	μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A
2347	Acenaphthen	μg/l	<0,01	k. A.	k. A.	k. A.	k. A.	k. A
	Polycylische aromatische Kohlenwasserstoffe							
	(PAK) in der Originalprobe (Fluoranthen,							
2350	Benzo(a)pyren, Benzo(b)Fluoranthen,							
	Benzo(k)fluoranthen, Benzo(ghi)perylen,							
	Indeno(1,2,3-cd)pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2400	Toluol	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
2410	o-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2415	Ethylbenzol	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2426	PCB-10	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2426	PCB-10	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2669	Bisphenol A	mg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2853	Perfluorbutansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2854	Perfluorpentansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Perfluorhexansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2856	Perfluorheptansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Perfluornonansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Perfluordekansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Perfluorundekansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Perfluordodekansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	m-Xylol und p-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	XYLOL (SUMME DER GEHALTE AN O,M,P-XYLOL)	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	Acrylamid	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	BTXE	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Methan	mg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Freies CO2	mmol/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Perfluoroktansulfonsäure Isomeren	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	Perfluoroktansäure Isomeren	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Perfluorbutansulfonsäre Isomeren	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	Perfluorhexansulfonsäure Isomeren	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	Perfluordecylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	H4-Perfluoroctylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	1H,1H,2H,2H-Perfluorhexansulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	Perfluorheptansulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	1H, 1H, 2H, 2H-Perfluordecansulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
1100	Summe PAK TVO (SUMME: Benzo-(b)-	P6/ ·	10.70					
4356	fluoranthen, Benzo-(k)-fluoranthen, Benzo-							
4550	(ghi)-perylen und Indeno-(1,2,3-cd)-pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
4357	Summe PAK EPA	μg/l	0,03	k. A.	k. A.	k. A.	k. A.	k. /
	Summe PAK EPA ohne Naphthalin	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	Perfluortridecansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	Perfluorpentansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	Perfluornonansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	Perfluorindekansulfonsäure inkl. Isomere	μg/I μg/I	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	Perfluordodekansulfonsäure inkl. Isomere	μg/I	k. A.	k. A.	k. A.	k. A.	k. A.	k. /
	Perfluortridekansulfonsäure inkl. Isomere	μg/I μg/I	k. A.	k. A.	k. A.	k. A.	k. A.	k
	PCB-4	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A.	k.
	PCB-4	μg/I	k. A.	k. A. k. A.	k. A.	k. A.	k. A.	k.
	Summe PCB-4+PCB-10				k. A.		k. A.	
	Summe PCB-4+PCB-10 Summe PCB-4+PCB-10	μg/l mg/kg	k. A. k. A.	k. A. k. A.	k. A.	k. A. k. A.	k. A.	k.

^{1) =} Um ein stets einheitliches Erscheinungsbild und spätere Vergleichbarkeit mit früheren Berichtsperioden zu ermöglichen, sind sämtliche Parameter des Parameterkatalogs A (Maximalumfang) aufgeführt. Soweit jeweils nur Teilprogramme bei der Probenahme absolviert wurden, ist in der jeweils für den Probenahmetermin einschlägigen Spalte zu den nicht untersuchten Parametem "k. A." eingetragen worden.

²⁾ = Prognose für Walsum ohne Concordia (2023 einschlägig)

^{3) =} Prognose für Walsum mit Concordia; Mittelwrt (vsl. ab 2024 einschlägig)

Regionale Arbeitsgruppe 2 (West), Walsum - Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024 Blatt 1 von 3

901 Wasservolumen	Nose2 Prognose2 R. A. R. R. R. R. R. R.	35 k. A. k. A. 6,44 k. A. k. A. 18833 263 327 700 26,7 11,3 k. A. k. A. k. A. k. A. k. A. k. A. 0,01 k. A. k. A.	k.A. k.A. k.A. k.A. 6,82 k.A. 87900 4,6 21800 336 434 725 30 1,6 <0,03 <0,02 <0,001 <0,001	k. A. k. A. k. A. k. A. 6,75 k. A. 88300 2711 436 738 28 1,2 <0,03 <0,2 <0,001 <0,03	k. A. k. A. k. A. k. A. 6,72 k. A. 87800 257 418 719 28 1,11 k. A. k. A.	°C	Wasservolumen Wassertemperatur Trübung Färbung pH-Wert Redoxpotential Elektrische Leitfähigkeit Lithium Natrium Kalium Magnesium Calcium in der Originalprobe	901 1011 1035 1044 1061 1072 1082 1111 1112
1011 Wassertemperatur	35 3: k. A. k. k. A. k. 6,44 6, k. A. k. k. A. k. k. A. k. 18833 180 263 2 327 2 700 8 26,7 11,3 4: k. A. k. k. k. A. k. k. k. A. k. k. k	35 k. A. k. A. 6,44 k. A. k. A. 18833 263 327 700 26,7 11,3 k. A. k. A. k. A. k. A. k. A. k. A. 0,01 k. A. k. A.	k.A. k.A. k.A. 6,82 k.A. 87900 4,6 21800 336 434 725 30 1,6 <0,03 <0,03 <0,02 <0,001	k. A. k. A. 6,75 k. A. 88300 6,6 23000 271 436 738 28 1,2 <0,03 <0,2 <0,001 <0,03	k. A. k. A. k. A. 6,72 k. A. 87800 k. A. 22700 257 418 719 28 1,11 k. A. k. A.	°C [-] [-] [-] mV µS/cm µg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l m	Wassertemperatur Trübung Färbung PH-Wert Redoxpotential Elektrische Leitfähigkeit Lithium Natrium Kalium Magnesium Calcium in der Originalprobe	1011 1035 1044 1061 1072 1082 1111 1112 1113
1035 Trübung	k. A. k. k. A. k. A. k. A. k. k. k. k. A. k. k. k. k. A. k. k. k. A. k. k. k. A. k. k. k. k. A. k. k. k. A. k. k. k. k. A. k.	k. A. k. A. 6,444 k. A. k. A. 18833 263 327 700 26,7 11,3 k. A. 0,01	k.A. k.A. 6,82 k.A. 87900 4,6 21800 336 434 725 30 1,6 <0,03 <0,02 <0,001 <0,03 0,005	k. A. k. A. 6,75 k. A. 88300 6,66 23000 271 436 738 28 1,2 <0,03 <0,02 <0,001 <0,03	k. A. k. A. 6,72 k. A. 87800 k. A. 22700 257 418 719 28 1,11 k. A. k. A.	[-] [-] mV µS/cm µg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l m	Trübung Färbung pH-Wert Redoxpotential Elektrische Leitfähigkeit Lithium Natrium Kalium Magnesium Calcium in der Originalprobe	1035 1044 1061 1072 1082 1111 1112
1044 Farbung	K. A. K. 6,44 6, K. A. K. A. K. K. K. A. K. K. K. A. K. K. K. A. K. K. A. K. K. K. K. A. K. K. K. K. K. A. K.	k. A. 6,44 k. A. k. A. 18833 263 327 700 26,7 11,3 k. A. k. A. k. A. k. A. k. A. k. A. 0,01	k.A. 6,82 k.A. 87900 4,6 21800 336 434 725 30 1,6 <0,03 <0,2 <0,001 <0,001 <0,003	k. A. 6,75 k. A. 88300 6,6 23000 271 436 738 28 1,2 <0,03 <0,02 <0,001 <0,03	k. A. 6,72 k. A. 87800 257 418 719 28 1,11 k. A. k. A.	[-] mV µS/cm µg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Färbung pH-Wert Redoxpotential Elektrische Leitfähigkeit Lithium Natrium Kalium Magnesium Calcium in der Originalprobe	1044 1061 1072 1082 1111 1112 1113
1061 pH-Wert	6,44 6, k. A. k. k. A. k. 18833 180 263 2 327 2 700 8 26,7 11,3 4 k. A. k.	6,44 k. A. k. A. 18833 263 327 700 26,7 11,3 k. A.	6,82 k.A. 87900 4,6 21800 336 434 725 30 1,6 <0,03 <0,02 <0,001 <0,030 0,005 <1	6,75 k. A. 88300 6,6 23000 2711 436 738 28 1,2 <0,03 <0,2 <0,001 <0,03	6,72 k. A. 87800 k. A. 22700 257 418 719 28 1,1 k. A. k. A.	[-] mV µS/cm µg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	pH-Wert Redoxpotential Elektrische Leitfähigkeit Lithium Natrium Kalium Magnesium Calcium in der Originalprobe	1061 1072 1082 1111 1112 1113
1072 Redoxpotential mV k. A. k. A. k. A. 1082 Elektrische Leitfähigkeit μ5/cm 87800 88300 87900 1111 1112	k. A. k. k. k. k. A. k. k. k. k. A. k. k. k. A. k. k. k. k. k. A. k.	k. A. k. A. 18833 263 327 700 26,7 11,3 k. A.	k.A. 87900 4,6 21800 336 434 725 30 1,6 <0,03 <0,02 <0,001 <0,03 0,005 <1	k. A. 88300 6,6 23000 2711 436 738 28 1,2 <0,03 <0,2 <0,001 <0,03	k. A. 87800 k. A. 22700 257 418 719 28 1,1 k. A. k. A.	mV μS/cm μg/l mg/l mg/l mg/l mg/l mg/l mg/l μg/l mg/l mg/l	Redoxpotential Elektrische Leitfähigkeit Lithium Natrium Kalium Magnesium Calcium in der Originalprobe	1072 1082 1111 1112 1113
1082 Elektrische Leitfähigkeit μS/cm 87800 88300 87900 1111 Uthium μg/l k. A. 6,6 4,6 1112 Natrium mg/l 22700 23000 21800 21800 1113 Kalium mg/l 22700 23000 21800 21800 1113 Kalium mg/l 257 271 336 1121 Magnesium mg/l 418 436 434 436 434 1122 Calcium in der Originalprobe mg/l 719 738 725 1123 Strontium μg/l 28 28 30 1124 Barium in der Originalprobe mg/l 1,1 1,2 1,6 1131 Aluminium in der Originalprobe mg/l k. A. <0,03 <0,03 1132 Thallium in der Originalprobe μg/l k. A. <0,003 <0,03 1133 Thallium in der Originalprobe mg/l k. A. <0,000 <0,001 1138 Biei in der Originalprobe mg/l k. A. <0,000 <0,001 1138 Biei in der Originalprobe mg/l k. A. <0,002 <0,005 1142 Arsen μg/l <1 <1 <1 <1 <1 <1 <1 <	K. A. K. k. A. k. 18833 180 263 2 327 2 700 8 26,7 11,3 4 k. A. k.	k. A. 18833 263 327 700 26,7 11,3 k. A.	87900 4,6 21800 336 434 725 30 1,6 <0,03 <0,02 <0,001 <0,03 0,005 <1	88300 6,6 23000 271 436 738 28 1,2 <0,03 <0,03 <0,001	87800 k. A. 22700 257 418 719 28 1,1 k. A. k. A.	μS/cm μg/l mg/l mg/l mg/l mg/l mg/l mg/l μg/l mg/l mg/l	Elektrische Leitfähigkeit Lithium Natrium Kalium Magnesium Calcium in der Originalprobe	1082 1111 1112 1113
1111 Lithium	k. A. k. 18833 180 263 2 327 2 700 8 26,7 11,3 4 k. A. k.	k. A. 18833 263 327 700 26,7 11,3 k. A. k. A. k. A. k. A. 0,01 k. A. k. A. k. A.	4,6 21800 336 434 725 30 1,6 <0,03 <0,2 <0,001 <0,03 0,005	6,6 23000 271 436 738 28 1,2 <0,03 <0,03 <0,001	k. A. 22700 257 418 719 28 1,1 k. A. k. A.	μg/l mg/l mg/l mg/l mg/l mg/l μg/l mg/l mg/l	Lithium Natrium Kalium Magnesium Calcium in der Originalprobe	1111 1112 1113
1112 Natrium	18833 180 263 2 327 2 700 8 26,7 11,3 4 k. A. k.	18833 263 327 700 26,7 11,3 k. A. k. A. 0,01 k. A. k. A. k. A.	336 434 725 30 1,6 <0,03 <0,03 <0,001 <0,001 <0,003	23000 271 436 738 28 1,2 <0,03 <0,02 <0,001 <0,03	22700 257 418 719 28 1,1 k. A. k. A.	mg/l mg/l mg/l µg/l mg/l mg/l	Natrium Kalium Magnesium Calcium in der Originalprobe	1112 1113
1121 Magnesium	327 2 700 8 26,7 11,3 4 k. A. k. 0,004 0,0 k. A. k.	327 700 26,7 11,3 k. A. k. A. k. A. 0,01 k. A. k. A. k. A.	434 725 30 1,6 <0,03 <0,02 <0,001 <0,03 0,005	436 738 28 1,2 <0,03 <0,03 <0,01 <0,03	418 719 28 1,1 k. A. k. A.	mg/l mg/l µg/l mg/l mg/l	Magnesium Calcium in der Originalprobe	
1122 Calcium in der Originalprobe mg/l 719 738 725 1123 Strontium μg/l 28 28 30 1124 Barium in der Originalprobe mg/l 1,1 1,2 1,6 1131 Aluminium in der Originalprobe mg/l k. A. <0,03	700 8 26,7 11,3 4: k. A. k. k. A. k. k. A. k. 0,01 0,0 k. A. k. 0,004 0,0 k. A. k.	700 26,7 11,3 k. A. k. A. k. A. 0,01 k. A. k. A. k. A.	725 30 1,6 <0,03 <0,2 <0,001 <0,03 0,005	738 28 1,2 <0,03 <0,2 <0,001 <0,03	719 28 1,1 k. A. k. A.	mg/l μg/l mg/l mg/l	Calcium in der Originalprobe	1121
1123 Strontium	26,7 11,3 4 k. A. k. k. A. k. O,01 0,0 k. A. k. co,004 0,004 k. A. k.	26,7 11,3 k. A. k. A. k. A. 0,01 k. A. k. A. k. A.	30 1,6 <0,03 <0,2 <0,001 <0,03 0,005	28 1,2 <0,03 <0,2 <0,001 <0,03	28 1,1 k. A. k. A. k. A.	μg/l mg/l mg/l	•	
1124 Barium in der Originalprobe mg/l 1,1 1,2 1,6 1131 Aluminium in der Originalprobe mg/l k. A. <0,03 <0,03 <0,03 1132 Thallium in der Originalprobe μg/l k. A. <0,02 <0,2 <0,2 <0,2 <1137 Zinn in der Originalprobe mg/l k. A. <0,001 <0,001 <0,001 <137 Zinn in der Originalprobe mg/l k. A. <0,003 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,03 <0,0	11,3 4 k. A. k. k. A. k. k. A. k. O,01 O,0 k. A. k. O,004 O,0 k. A. k.	11,3 k. A. k. A. c. A. c. A. c. A. k. A. k. A. k. A.	1,6 <0,03 <0,2 <0,001 <0,03 0,005 <1	1,2 <0,03 <0,2 <0,001 <0,03	1,1 k. A. k. A. k. A.	mg/l mg/l		
1131 Aluminium in der Originalprobe mg/l k. A. <0,03 <0,03 1132 Thallium in der Originalprobe µg/l k. A. <0,2	K. A. K.	k. A. k. A. 0,01 k. A. k. A. k. A. k. A.	<0,03 <0,2 <0,001 <0,03 0,005	<0,03 <0,2 <0,001 <0,03	k. A. k. A. k. A.	mg/l		
1132 Thallium in der Originalprobe μg/l k. A. <0,2 <0,2 1137 Zinn in der Originalprobe mg/l k. A. <0,001 <0,001 1138 Blei in der Originalprobe mg/l <0,03 <0,03 <0,03 1141 Vanadium in der Originalprobe mg/l k. A. 0,002 0,005 1142 Arsen μg/l <1 <1 <1 <1 1145 Antimon in der Originalprobe mg/l k. A. k. A. 0,005 1149 Blei 210 mBq/L k. A. <72 <95 1151 Chrom in der Originalprobe mg/l k. A. <0,03 <0,03 1154 Chrom (VI) mg/l k. A. <0,01 <0,01 1155 Molybdän μg/l k. A. <1 <1 1157 Thorium 228 mBq/l k. A. k. A. k. A. 1161 Kupfer in der Originalprobe mg/l <0,03 0,17 <0,03 1164 Zink in der Originalprobe mg/l <0,03 0,17 <0,03 1165 Cadmium in der Originalprobe mg/l <0,005 <0,005 1166 Quecksilber in der Originalprobe mg/l <0,005 <0,005 1167 Uran, in der Originalprobe μg/l k. A. <0,000 <0,0005 1168 Radon 222 mBq/L k. A. (A. <4700 1171 Mangan in der Originalprobe mg/l 0,88 0,9 0,91 1173 Radium 228 mBq/L k. A. (A. <12 <26 1176 Uran 235 mBq/L k. A. <27 <24 1177 Uran 238 mBq/L k. A. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <4. <	K. A. K. k. A. K. O,01 O,0 k. A. K. co,004 O,0 k. A. K.	k. A. k. A. 0,01 k. A. k. A. k. A. 0,004 k. A.	<0,2 <0,001 <0,03 0,005	<0,2 <0,001 <0,03	k. A. k. A.			
1137 Zinn in der Originalprobe mg/l k. A. <0,001 <0,001 1138 Blei in der Originalprobe mg/l <0,03 <0,03 <0,03 1141 Vanadium in der Originalprobe mg/l k. A. 0,002 0,005 1142 Arsen μg/l <1 <1 <1 <1 1145 Antimon in der Originalprobe mg/l k. A. k. A. 0,005 1149 Blei 210 mBq/L k. A. <72 <95 1151 Chrom in der Originalprobe mg/l k. A. <0,03 <0,03 1154 Chrom (VI) mg/l k. A. <0,01 <0,01 1155 Molybdän μg/l k. A. <1 <1 1157 Thorium 228 mBq/l k. A. k. A. k. A. 1161 Kupfer in der Originalprobe mg/l <0,03 0,17 <0,03 1164 Zink in der Originalprobe mg/l <0,03 0,17 <0,03 1165 Cadmium in der Originalprobe mg/l <0,005 <0,005 1166 Quecksilber in der Originalprobe mg/l k. A. <0,000 <0,000 1167 Uran, in der Originalprobe μg/l k. A. <0,000 <0,000 1168 Radon 222 mBq/L k. A. k. A. k. A. <4700 1171 Mangan in der Originalprobe mg/l 0,88 0,9 0,91 1173 Radium 226 mBq/L k. A. 212 226 1174 Radium 228 mBq/L k. A. <27 <24 1175 Uran 238 mBq/L k. A. <17 <182 1176 Uran 235 mBq/L k. A. <1. <1 1188 Eisen in der Originalprobe mg/l 0,03 <0,03 1193 Kalium 40 mBq/L k. A. k. A. k. A. k. A.	k. A. k. 0,01 0,0 k. A. k. k. k. A. k. k. k. A. k. d. k. k. d. k.	k. A. 0,01 k. A. k. A. k. A. k. A. 0,004 k. A.	<0,001 <0,03 0,005 <1	<0,001 <0,03	k. A.		1	
1138 Blei in der Originalprobe mg/l <0,03 <0,03 <0,03 <0,03 <1,003 <1,003 <1,003 <1,003 <1,003 <1,003 <1,003 <1,003 <1,003 <1,003 <1,003 <1,003 <1,005 <1,104 <1,005 <1,005 <1,104 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005 <1,005	0,01 0,0 k. A. k. k. A. k. k. A. k. k. A. k. 0,004 0,0 k. A. k. k. A. k. k. A. k. 0,002 0,0 0,0019 0,00 k. A. k.	0,01 k. A. k. A. k. A. k. A. 0,004 k. A.	<0,03 0,005 <1	<0,03				
1141 Vanadium in der Originalprobe mg/l k. A. 0,002 0,005 1142 Arsen μg/l <1	k. A. k.	k. A. k. A. k. A. k. A. 0,004	0,005 <1		∠∩ ∩2 l		•	
1142 Arsen	k. A. k. A. k. k. k. A. k. k. k. A. k.	k. A. k. A. k. A. 0,004 k. A.	<1					
1145 Antimon in der Originalprobe mg/l k. A. k. A. 0,005 1149 Blei 210 mBq/L k. A. <72	k. A. k. k. o,004 o,0 k. A. k. k. A. k. k. A. k. k. A. k. o,0024 o,00 o,0019 o,000 k. A. k. k. k. A. k.	k. A. k. A. 0,004 k. A.						
1149 Blei 210 mBq/L k. A. <72 <95 1151 Chrom in der Originalprobe mg/l <0,03 <0,03 <0,03 1154 Chrom (VI) mg/l k. A. <0,01 <0,01 1155 Molybdän μg/l k. A. <1 <1 1157 Thorium 228 mBq/l k. A. k. A. k. A. 1161 Kupfer in der Originalprobe mg/l <0,03 0,17 <0,03 1164 Zink in der Originalprobe mg/l 0,11 0,16 <0,03 1165 Cadmium in der Originalprobe mg/l <0,005 <0,005 <0,005 1166 Quecksilber in der Originalprobe mg/l k. A. <0,0002 <0,0005 1167 Uran, in der Originalprobe μg/l k. A. <0,2 <0,2 1168 Radon 222 mBq/L k. A. k. A. <4700 1171 Mangan in der Originalprobe mg/l 0,88 0,9 0,91 1173 Radium 226 mBq/L k. A. 160 172 1174 Radium 228 mBq/L k. A. <27 <24 1176 Uran 235 mBq/L k. A. <179 <182 1178 Radium 224 mBq/L k. A. <179 <182 1178 Radium 24 mBq/L k. A. <1 <1 1188 Nickel in der Originalprobe mg/l <0,03 <0,03 <0,03 1193 Kalium 40 mBq/L k. A. k. A. k. A. <1.	k. A. k. 0,004 0,00 k. A. k. k. A. k. k. A. k. 0,024 0,00 0,0019 0,000 k. A. k.	k. A. 0,004 k. A.	3,000					
1151 Chrom in der Originalprobe mg/l <0,03 <0,03 <0,03 1154 Chrom (VI) mg/l k. A. <0,01	0,004 0,0 k. A. k. k. A. k. O,024 0,0 0,2 0,0 0,0019 0,000 k. A. k.	0,004 k. A.	<95					
1154 Chrom (VI) mg/I k. A. <0,01	k. A. k. k. A. k. 0,024 0,0 0,2 0,0 0,0019 0,00 k. A. k.							
1157 Thorium 228 mBq/l k. A. k. A. k. A. k. A. 1161 Kupfer in der Originalprobe mg/l <0,03 0,17 <0,03 1164 Zink in der Originalprobe mg/l 0,11 0,16 <0,03 1165 Cadmium in der Originalprobe mg/l <0,005 <0,005 <0,005 1166 Quecksilber in der Originalprobe mg/l k. A. <0,0002 <0,0002 1167 Uran, in der Originalprobe μg/l k. A. <0,2 <0,2 1168 Radon 222 mBq/L k. A. k. A. <4700 1171 Mangan in der Originalprobe mg/l 0,88 0,9 0,91 1173 Radium 226 mBq/L k. A. 160 172 1174 Radium 228 mBq/L k. A. 212 226 1176 Uran 235 mBq/L k. A. <27 <24 1177 Uran 238 mBq/L k. A. <179 <182 1178 Radium 224 mBq/L k. A. <179 <182 1178 Radium 224 mBq/L k. A. <179 <182 1178 Radium 224 mBq/L k. A. <179 <182 1180 Kobalt μg/l 7,6 7,5 7,1 1181 Nickel in der Originalprobe mg/l <0,03 <0,03 <0,03 1193 Kalium 40 mBq/L k. A. K. A	k. A. k. 0,024 0,0 0,2 0,0 0,0019 0,00 k. A. k.	k. A.	<0,01		k. A.			
1161 Kupfer in der Originalprobe mg/l <0,03	0,024 0,0 0,2 0, 0,0019 0,00 k. A. k.		<1	<1	k. A.	μg/l	Molybdän	1155
1164 Zink in der Originalprobe mg/l 0,11 0,16 <0,03	0,2 0, 0,0019 0,00 k. A. k.	k. A.	k.A.	k. A.	k. A.	mBq/l	Thorium 228	1157
1165 Cadmium in der Originalprobe mg/l <0,005	0,0019 0,00 k. A. k.	0,024	<0,03	0,17	<0,03	mg/l		
1166 Quecksilber in der Originalprobe mg/l k. A. <0,0002	k. A. k.						9 1	
1167 Uran, in der Originalprobe μg/l k. A. <0,2							1	
1168 Radon 222 mBq/L k. A. k. A. <4700	k A I k							
1171 Mangan in der Originalprobe mg/l 0,88 0,9 0,91 1173 Radium 226 mBq/L k. A. 160 172 1174 Radium 228 mBq/L k. A. 212 226 1176 Uran 235 mBq/L k. A. <27								
1173 Radium 226 mBq/L k. A. 160 172 1174 Radium 228 mBq/L k. A. 212 226 1176 Uran 235 mBq/L k. A. <27	k. A. k.							
1174 Radium 228 mBg/L k. A. 212 226 1176 Uran 235 mBq/L k. A. <27	1,28 1, k. A. k.						•	
1176 Uran 235 mBq/L k. A. <27	k. A. k. k. A. k.							
1177 Uran 238 mBq/L k. A. <179	k. A. k.							
1178 Radium 224 mBq/L k. A. k. A. k. A. 1182 Eisen in der Originalprobe mg/l 7,6 7,5 7,1 1186 Kobalt μg/l k. A. <1	k. A. k.						•	
1186 Kobalt μg/l k. A. <1	k. A. k.							
1188 Nickel in der Originalprobe mg/l <0,03 <0,03 <0,03 1193 Kalium 40 mBq/L k. A. k. A. k. A.	12,8 2			7,5				
1193 Kalium 40 mBq/L k. A. k. A. k.A.	k. A. k.	k. A.	<1	<1	k. A.	μg/l	Kobalt	1186
	0,014 0,0	0,014	<0,03	<0,03	<0,03	mg/l	Nickel in der Originalprobe	1188
1195 Cäsium 137 mBa/L k. A. k. A. k. A. k. A.	k. A. k.	k. A.	k.A.	k. A.	k. A.	mBq/L	Kalium 40	1193
	k. A. k.		k.A.	k. A.	k. A.	mBq/L		
1196 Polonium 210 mBq/L k. A. 2,1 <1,3	k. A. k.							
1211 Bor mg/l 2,7 2,7 2,4	2,63 2,							
1218 Selen, in der Originalprobe µg/l k. A. <1 <1	k. A. k.						•	
1224 Hydrogencarbonat mg/l 98 94 107	212 2	1					1	
1231 Cyanid, gesamt, in der Originalprobe mg/l k. A. <0,01 k.A. 1244 Nitrat mg/l 55 <1	k. A. k.							
1244 Nitrat mg/l 55 <1 <1 1245 Nitratstickstoff (NO3-N) mg/l 12 <0,3 <0,3	1, / k. A. k.							
1245 Nitriat	0,024 0,0							
1247 Nitritstickstoff (NO-2-N) mg/l <0,005 <0,005 <0,005	k. A. k.							
1249 Ammoniumstickstoff (NH4-N) mg/l 13 13 13	15,9 1						· · · · · · · · · · · · · · · · · · ·	
1261 Gesamt-Phosphat mg/l k. A. k. A. 1,9	0,04 0,							
1262 Phosphor, gesamt, in der Originalprobe mg/l k. A. <0,5 <0,5	k. A. k.						·	
1263 Ortho-Phosphat mg/l k. A. k. A. 0,63	k. A. k.							
1264 Orthophosphat-Phosphor mg/l k. A. k. A. 0,21	k. A. k.						· · · · · · · · · · · · · · · · · · ·	
Phosphoryerbindungen als Phosphor, gesamt.							Phosphoryerbindungen als Phosphor, gesamt.	
in der Original probe mg/l k. A. k. A. 0,62	k. A. k.	k. A.	0,62	k. A.	k. A.	mg/l	in der Originalprobe	1269
1281 Sauerstoff, in der Originalprobe mg/l k. A. k. A. k.A. k.A.	k. A. k.	k. A.	k.A.	k. A.	k. A.	mg/l	Sauerstoff, in der Originalprobe	1281
1783							,	1202
Sauerstoffsättigungsindex, in der Originalprobe % k. A. k. A. k. A. k.A.	k. A. k.	k. A.	k.A.		k. A.	%	Sauerstoffsättigungsindex, in der Originalprobe	1283
1309 Sulfid, leicht freisetzbar mg/l k. A. <0,005 k.A.		k. A.		,			-	
1311 Sulfid mg/l k. A. k. A. k.A.	k. A. k.	0						
40401cfe	0	333	446	492	540	mg/l		
	0 333 3		<0,2	0,2	k. A.	mg/l	Fluorid, gesamt, in der Originalprobe	
1321 Fluorid, gesamt, in der Originalprobe mg/l k. A. 0,2 <0,2	0 333 3 k. A. k.	k. A.		E1	-2	mg/l	1	
	0 333 3	k. A. 47,8					•	

Bericht des Jahres 2024

Regionale Arbeitsgruppe 2 (West), Walsum -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024 Blatt 2 von 3

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	14.03.2024	15.05.2024	13.12.2024	Prognose ²⁾	Prognose ³⁾
	Abfiltrierbare Stoffe (suspendierte Stoffe) in					3	3
1441	der Originalprobe	mg/l	22	k. A.	k.A.	3,58	2,4
1472	Säurekapazität bis pH 4,3	mmol/l	1,6	1,54	1,75	k. A.	k. A
1473	Basekapazität bis pH 4,3	mmol/l	k. A.	k. A.	k.A.	k. A.	k. A
	Säurekapazität bis pH 8,2	mmol/l	<0,05	<0,05	0,05	k. A.	k. A
	Basekapazität bis pH 8,2	mmol/l	k. A.	k. A.	k.A.	k. A.	k. A
	Carbonathärte	mmol/l	k. A.	k. A.	k.A.	k. A.	k. A
1521	Organischer Kohlenstoff, gelöst Organischer gebundener Kohlenstoff, gesamt	mg/l	k. A.	k. A.	k.A.	k. A.	k. A
1523	(TOC), in der Originalprobe	mg/l	3	8	<2	k. A.	k. A
1552	Kohlenwasserstoffe, gesamt, in der Originalprobe	mg/l	<0,1	<0,1	<0,1	k. A.	k. A
	Gesamt-Alpha-Aktivitätskonzentration	mBq/L	k. A.	k. A.	323	k. A.	k. <i>A</i>
	Gesamt-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k.A.	k. A.	k. A
	Rest-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k.A.	k. A.	k. A
	Richtdosis (Trinkwasser) Trichlorethen	mSv/a μg/l	k. A. k. A.	k. A. <0,1	k.A. <0,1	k. A. k. A.	k. A k. A
	Tetrachlorethen	μg/I μg/I	k. A.	<0,1	<0,1	k. A.	k. <i>A</i>
	I HKW Summe gem AhwV Anhänge 9 25 40	με/ ι	K. A.	\0,1	\0,1	к. д.	к. /-
2045	und 54 als Cl	μg/l	k. A.	k. A.	0	k. A.	k. A
2048	Benzol	μg/l	k. A.	k. A.	k.A.	k. A.	k. <i>A</i>
2071	PCB-28	mg/kg	k. A.	k. A.	k.A.	k. A.	k. A
2071	PCB-28	μg/l	k. A.	<0,01	<0,01	0,00187	0,00058
	PCB-52	μg/l	k. A.	<0,01	<0,01	0,001591	0,0007
	PCB-52	mg/kg	k. A.	k. A.	k.A.	k. A.	k. /
	PCB-101	mg/kg	k. A.	k. A.	k.A.	k. A.	k. A
	PCB-101 PCB-138	μg/l mg/kg	k. A. k. A.	<0,01 k. A.	<0,01 k.A.	0,000327 k. A.	0,00016 k. A
	PCB-138	μg/l	k. A.	<0,01	<0,01	0,000124	0,00006
	PCB-153	mg/kg	k. A.	k. A.	k.A.	k. A.	k. /
	PCB-153	μg/l	k. A.	<0,01	<0,01	0,000131	0,00006
	PCB-180	μg/l	k. A.	<0,01	<0,01	0,000044	0,00002
2077	PCB-180	mg/kg	k. A.	k. A.	k.A.	k. A.	k. /
	PCB-118	μg/l	k. A.	k. A.	<0,01	0,000224	0,0001
	PCB-118	mg/kg	k. A.	k. A.	k.A.	k. A.	k. /
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	mg/kg	k. A.	k. A.	k.A.	k. A.	k. /
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	μg/l	k. A.	k. A. k. A.	k.A. k.A.	k. A. k. A.	k. /
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36 2,2',5,5'-Tetracl-4-me-dm:TCBT 36	mg/kg μg/l	k. A. k. A.	k. A.	k.A.	k. A.	k. /
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	μg/I	k. A.	k. A.	k.A.	k. A.	k. /
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	mg/kg	k. A.	k. A.	k.A.	k. A.	k. /
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	μg/l	k. A.	k. A.	k.A.	k. A.	k. /
2185	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	mg/kg	k. A.	k. A.	k.A.	k. A.	k. <i>i</i>
2186	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	mg/kg	k. A.	k. A.	k.A.	k. A.	k
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	μg/l	k. A.	k. A.	k.A.	k. A.	k. /
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	mg/kg	k. A.	k. A.	k.A.	k. A.	k. /
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	μg/l	k. A.	k. A.	k.A.	k. A.	k
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	μg/l	k. A.	k. A.	k.A.	k. A.	k. /
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28 2,3',4,4'-Tetracl-5-me-dm:TCBT 52	mg/kg	k. A. k. A.	k. A. k. A.	k.A. k.A.	k. A. k. A.	k. /
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	μg/l mg/kg	k. A.	k. A.	k.A.	k. A.	k. /
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	μg/l	k. A.	k. A.	k.A.	k. A.	k. /
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	mg/kg	k. A.	k. A.	k.A.	k. A.	k
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	mg/kg	k. A.	k. A.	k.A.	k. A.	k
2195	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	μg/l	k. A.	k. A.	k.A.	k. A.	k
	Fluoranthen	μg/l	k. A.	<0,01	0,05	k. A.	k
	Benzo(b)fluoranthen	μg/l	k. A.	<0,01	<0,01	k. A.	k
	Benzo(k)fluoranthen	μg/l	k. A.	<0,01	<0,01	k. A.	k
	Naphthalin	μg/l	k. A.	0,03	0,02	k. A.	k.
	1-Methylnaphthalin	mg/l	k. A.	k. A.	0,01	k. A.	k.
	2-Methylnaphtalin Benzo(ghi)perylen	mg/l μg/l	k. A. k. A.	k. A. <0,01	0,01 <0,01	k. A. k. A.	k.
	Pyren	μg/I μg/I	k. A.	<0,01	0,01	k. A.	k.
	Benzo(a)pyren	μg/I μg/I	k. A.	<0,01	<0,04	k. A.	k.
	Chrysen	μg/I	k. A.	<0,01	<0,01	k. A.	k.
	Dibenz(ah)anthracen	μg/l	k. A.	<0,01	<0,01	k. A.	k.
	Indeno(1,2,3-cd)pyren	μg/l	k. A.	<0,01	<0,01	k. A.	k.
	Anthracen	μg/l	k. A.	<0,01	<0,01	k. A.	k.
2336	Benzo(a)anthracen	μg/l	k. A.	<0,01	<0,01	k. A.	k.
2340	Phenanthren	μg/l	k. A.	<0,01	0,07	k. A.	k.
	Fluoren	μg/l	k. A.	<0,01	<0,01	k. A.	k.

Regionale Arbeitsgruppe 2 (West), Walsum -

Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024 Blatt 3 von 3

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	14.03.2024	15.05.2024	13.12.2024	Prognose ²⁾	Prognose ³⁾
2346	Acenaphthylen	μg/l	k. A.	<0,01	0,03	k. A.	k. A
2347	Acenaphthen	μg/l	k. A.	<0,01	<0,01	k. A.	k. A
	Polycylische aromatische Kohlenwasserstoffe (PAK) in der Originalprobe (Fluoranthen, Benzo(a)pyren, Benzo(b)Fluoranthen, Benzo(k)fluoranthen, Benzo(ghi)perylen,						
	Indeno(1,2,3-cd)pyren)	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
2400	Toluol	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
2410	o-Xylol	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
2415	Ethylbenzol	μg/l	k. A.	k. A.	<1	k. A.	k. A
2426	PCB-10	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
2426	PCB-10	mg/kg	k. A.	k. A.	k.A.	k. A.	k. A
2669	Bisphenol A	mg/l	k. A.	0,00055	<0,0001	k. A.	k. A
2853	Perfluorbutansäure	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
2854	Perfluorpentansäure	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
2855	Perfluorhexansäure	μg/l	k. A.	<0,1	0,1	k. A.	k. A
	Perfluorheptansäure	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
2857	Perfluornonansäure	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
	Perfluordekansäure	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
2859	Perfluorundekansäure	μg/l	k. A.	<0,2	<0,2	k. A.	k. A
2860	Perfluordodekansäure	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
2896	m-Xylol und p-Xylol	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
2913	XYLOL (SUMME DER GEHALTE AN O,M,P-XYLOL)	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
	Acrylamid	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
2950	BTXE	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
3001	Methan	mg/l	k. A.	4,6	1,9	k. A.	k. A
	Freies CO2	mmol/l	k. A.	k. A.	k.A.	k. A.	k. A
4007	Perfluoroktansulfonsäure Isomeren	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
	Perfluoroktansäure Isomeren	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
	Perfluorbutansulfonsäre Isomeren	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
	Perfluorhexansulfonsäure Isomeren	μg/l	k. A.	<0,1	<0,1	k. A.	k. A
	Perfluordecylsulfonsäure	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
	H4-Perfluoroctylsulfonsäure	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
	1H,1H,2H,2H-Perfluorhexansulfonsäure	μg/l	k. A.	k. A.	<0,1	k. A.	k. A
4104	Perfluorheptansulfonsäure	μg/l	k. A.	k. A.	<0,1	k. A.	k. A
4105	1H, 1H, 2H, 2H-Perfluordecansulfonsäure	μg/l	k. A.	<0,1	<0,2	k. A.	k. A
4356	Summe PAK TVO (SUMME: Benzo-(b)- fluoranthen, Benzo-(k)-fluoranthen, Benzo-	/1	l. A	l- A	I. A	I. A	
4257	(ghi)-perylen und Indeno-(1,2,3-cd)-pyren)	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
	Summe PAK EPA	μg/l	k. A.	0,03	0,21	k. A.	k. A
	Summe PAK EPA ohne Naphthalin	μg/l	k. A.	k. A.	k.A.	k. A.	k. A
	Perfluortridecansäure	μg/l	k. A.	k. A.	<0,5	k. A.	k. A
	Perfluorpentansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	<0,1	k. A.	k. A
	Perfluornonansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	<0,5	k. A.	k. A
	Perfluorundekansulfonsäure inkl. Isomere	μg/l	k. A.	<0,5	<0,5	k. A.	k. A
	Perfluordodekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	<0,5	k. A.	k. A
	Perfluortridekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	<0,5	k. A.	k. <i>A</i>
	PCB-4	mg/kg	k. A.	k. A.	k.A.	k. A.	k. <i>F</i>
	PCB-4	μg/l	k. A.	k. A.	k.A.	k. A.	k. <i>F</i>
	Summe PCB-4 + PCB-10	μg/l	k. A.	k. A.	k.A.	k. A.	k. <i>F</i>
4576	Summe PCB-4 + PCB-10	mg/kg	k. A.	k. A.	k.A.	k. A.	k. <i>A</i>

¹⁾ = Um ein stets einheitliches Erscheinungsbild und spätere Vergleichbarkeit mit früheren Berichtsperioden zu ermöglichen, sind sämtliche Parameter des Parameterkatalogs A (Maximalumfang) aufgeführt. Soweit jeweils nur Teilprogramme bei der Probenahme absolviert wurden, ist in der jeweils für den Probenahmetermin einschlägigen Spalte zu den nicht untersuchten Parametem "k. A." eingetragen worden.

²⁾ = Prognose für Walsum ohne Concordia (2023 einschlägig)

^{3) =} Prognose für Walsum mit Concordia; Mittelwert (vsl. ab 2024 einschlägig)

Bericht des Jahres 2024

Regionale Arbeitsgruppe 5 (Ruhr), Friedlicher Nachbar -

Allalysell	ergebnisse der amtlichen Überw	achung	uer wasser	mailungen	IIII Jaili 202	.3	Blatt 1 von 3
Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	23.03.2023	06.06.2023	16.08.2023	12.12.2023	Prognose ²⁾
901	Wasservolumen	I	k. A.	k. A.	k. A.	k. A.	k. A
	Wassertemperatur	°C	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	Trübung	[-]	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Färbung	[-]	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	i'	[-]	8,13	8,03	7,7	8,08	8,147
	Redoxpotential	mV c./	k. A.	k. A.	k. A.	k. A.	k. /
	Elektrische Leitfähigkeit	μS/cm	2510 300	2420	2580	2460 k. A.	k. A
	Lithium Natrium	μg/l mg/l	453	k. A. 428	k. A. 492	431	436,1
	Kalium	mg/l	18	19	21	18	19,4
	Magnesium	mg/l	47	47	53	49	43,
	Calcium in der Originalprobe	mg/l	90	71	99	94	87,
	Strontium	μg/l	1,5	1,4	1,6	1,5	1,3
1124	Barium in der Originalprobe	mg/l	0,1	0,12	0,1	0,12	0,441
1131	Aluminium in der Originalprobe	mg/l	<0,03	k. A.	k. A.	k. A.	k. <i>A</i>
1132	Thallium in der Originalprobe	μg/l	<0,2	k. A.	k. A.	k. A.	k. <i>A</i>
1137	Zinn in der Originalprobe	mg/l	<0,001	k. A.	k. A.	k. A.	k. <i>A</i>
1138	Blei in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,00
1141	Vanadium in der Originalprobe	mg/l	<0,001	k. A.	k. A.	k. A.	k. <i>A</i>
	Arsen	μg/l	1	<1	1	1	0,0
	Antimon in der Originalprobe	mg/l	<0,001	k. A.	k. A.	k. A.	k. /
	Blei 210	mBq/L	k. A.	k. A.	k. A.	k. A.	k. /
	9 .	mg/l	<0,03	<0,03	<0,03	<0,03	0,676
	Chrom (VI)	mg/l	<0,01	k. A.	k. A.	k. A.	k. <i>F</i>
	Molybdän	μg/l	<1	k. A.	k. A.	k. A.	k. /
	Thorium 228 Kupfer in der Originalprobe	mBq/l	k. A. <0,03	k. A. <0,03	k. A. <0,03	k. A. <0,03	k. <i>A</i> 0,148
	Zink in der Originalprobe	mg/l mg/l	<0,03	<0,03	<0,03	<0,03	0,148
	Cadmium in der Originalprobe	mg/l	<0,005	<0,03	<0,03	<0,03	0,000
	Quecksilber in der Originalprobe	mg/l	<0,0002	k. A.	k. A.	k. A.	k. <i>A</i>
	Uran, in der Originalprobe	μg/l	0,5	k. A.	k. A.	k. A.	k. /
	Radon 222	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Mangan in der Originalprobe	mg/l	0,38	0,1	0,37	0,45	0,00
	Radium 226	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Radium 228	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
1176	Uran 235	mBq/L	k. A.	k. A.	k. A.	k. A.	k. A
1177	Uran 238	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
1178	Radium 224	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
1182	Eisen in der Originalprobe	mg/l	2,3	1,2	3,1	2,9	2,9
1186	Kobalt	μg/l	<1	k. A.	k. A.	k. A.	k. <i>F</i>
	Nickel in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,004
	Kalium 40	mBq/L	k. A.	k. A.	k. A.	k. A.	k. /
	Cäsium 137	mBq/L	k. A.	k. A.	k. A.	k. A.	k. A
	Polonium 210	mBq/L	k. A.	k. A.	k. A.	k. A.	k. A
1211		mg/l	0,87	0,77	0,66	0,71	1,065
	Selen, in der Originalprobe	μg/l	<1 791	k. A.	k. A.	k. A.	k. A
	Hydrogencarbonat Cyanid, gesamt, in der Originalprobe	mg/l	/91 k. A.	775 k. A.	806 k. A.	810 k. A.	799,3
	Nitrat	mg/l mg/l	1 K. A.	K. A. <1	<1	K. A. <1	0,302
	Nitratstickstoff (NO3-N)	mg/l	<0,3	<0,3	<0,3	<0,3	k. A
	Nitrit	mg/l	0,034	0,039	0,032	0,025	k. /
	Nitritstickstoff (NO-2-N)	mg/l	0,01	0,012	0,0097	0,0076	0,013
	Ammoniumstickstoff (NH4-N)	mg/l	0,68	0,52	0,6	0,58	0,714
	Gesamt-Phosphat	mg/l	k. A.	k. A.	k. A.	k. A.	k. /
	Phosphor, gesamt, in der Originalprobe	mg/l	<0,5	<0,5	<0,5	<0,5	k. /
	Ortho-Phosphat	mg/l	k. A.	k. A.	k. A.	k. A.	k. /
	Orthophosphat-Phosphor	mg/l	k. A.	k. A.	k. A.	k. A.	0,078
	Phosphorverbindungen als Phosphor, gesamt,						, , , , , , , , , , , , , , , , , , , ,
1269	in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	k. /
1281	Sauerstoff, in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	7,92
1283	C	٥,					
	Sauerstoffsättigungsindex, in der Originalprobe Sulfid, leicht freisetzbar	% mg/l	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. /
	Sulfid	mg/l	K. A. <0,005	k. A. k. A.	k. A.	k. A. k. A.	k. <i>F</i>
	Sulfat	mg/l	<0,005	K. A. 234	222	K. A. 220	
	Fluorid, gesamt, in der Originalprobe	mg/l mg/l	0,7	234 k. A.	k. A.	220 k. A.	269,2 k. A
	Bromid	mg/I mg/I	<2	K. A. <2	K. A.	K. A. <2	0,01
	Jodid	mg/l	0,022	k. A.	k. A.	k. A.	0,01 k. <i>F</i>
	Chlorid	mg/l	335	315	359	315	300,9
1331	Ciliona	IIIg/I	333	313	339	313	300,

Regionale Arbeitsgruppe 5 (Ruhr), Friedlicher Nachbar -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023

Blatt 2 von 3

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	23.03.2023	06.06.2023	16.08.2023	12.12.2023	Blatt 2 von Prognose ²⁾
	Abfiltrierbare Stoffe (suspendierte Stoffe) in						. rognoco
1441	der Originalprobe	mg/l	6	5	2	6	17,0
1472	Säurekapazität bis pH 4,3	mmol/l	12,96	12,7	13,21	13,27	k. /
	Basekapazität bis pH 4,3	mmol/l	k. A.	k. A.	k. A.	k. A.	k. /
1476	Säurekapazität bis pH 8,2	mmol/l	<0,05	<0,05	<0,05	<0,05	k
1477	Basekapazität bis pH 8,2	mmol/l	k. A.	k. A.	k. A.	k. A.	k
	Carbonathärte	mmol/l	k. A.	k. A.	k. A.	k. A.	k. /
	Organischer Kohlenstoff, gelöst	mg/l	k. A.	k. A.	k. A.	k. A.	k. /
1523	Organischer gebundener Kohlenstoff, gesamt (TOC), in der Originalprobe	mg/l	<2	3	3	<2	1,528
1552	Kohlenwasserstoffe, gesamt, in der Originalprobe	mg/l	<0,1	<0,1	<0,1	<0,1	k
1801	Gesamt-Alpha-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	k.
1803	Gesamt-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	k.
	Rest-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	k.
	Richtdosis (Trinkwasser)	mSv/a	k. A.	k. A.	k. A.	k. A.	k
	Trichlorethen	μg/l	<0,1	k. A.	k. A.	k. A.	k
2021	Tetrachlorethen	μg/l	<0,1	k. A.	k. A.	k. A.	k
2045	LHKW, Summe gem. AbwV Anhänge 9, 25, 40 und 54 als Cl	ug/l	k. A.	k. A.	k. A.	kΛ	L.
2049	Benzol	μg/l μg/l	k. A.	k. A.	k. A.	k. A. k. A.	k. <i>i</i>
	PCB-28	mg/kg	k. A.	k. A.	k. A.	k. A.	0,0
	PCB-28	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
	PCB-52	μg/I	<0,01	k. A.	k. A.	k. A.	<0,1
	PCB-52	mg/kg	k. A.	k. A.	k. A.	k. A.	0,0:
	PCB-101	mg/kg	k. A.	k. A.	k. A.	k. A.	0,0
	PCB-101	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
	PCB-138	mg/kg	k. A.	k. A.	k. A.	k. A.	0,0
	PCB-138	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
2076	PCB-153	mg/kg	k. A.	k. A.	k. A.	k. A.	0,0
2076	PCB-153	μg/l	<0,01	k. A.	k. A.	k. A.	<0,
2077	PCB-180	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
2077	PCB-180	mg/kg	k. A.	k. A.	k. A.	k. A.	0,00
2079	PCB-118	μg/l	k. A.	k. A.	k. A.	k. A.	<0,0
2079	PCB-118	mg/kg	k. A.	k. A.	k. A.	k. A.	0,0
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	mg/kg	k. A.	k. A.	k. A.	k. A.	k
2181	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	μg/l	k. A.	k. A.	k. A.	k. A.	k
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	mg/kg	k. A.	k. A.	k. A.	k. A.	k
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	μg/l	k. A.	k. A.	k. A.	k. A.	k
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	μg/l	k. A.	k. A.	k. A.	k. A.	k
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	mg/kg	k. A.	k. A.	k. A.	k. A.	k
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	μg/l	k. A.	k. A.	k. A.	k. A.	k
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	mg/kg	k. A.	k. A.	k. A.	k. A.	k
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22 2,2',4,6'-Tetracl-3-me-dm:TCBT 27	μg/l	k. A.	k. A.	k. A.	k. A.	k
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	mg/kg	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	k k
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	μg/l μg/l	k. A.	k. A.	k. A.	k. A.	k.
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	mg/kg	k. A.	k. A.	k. A.	k. A.	k.
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	μg/l	k. A.	k. A.	k. A.	k. A.	k
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	mg/kg	k. A.	k. A.	k. A.	k. A.	k
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	μg/I	k. A.	k. A.	k. A.	k. A.	k.
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	mg/kg	k. A.	k. A.	k. A.	k. A.	k.
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	mg/kg	k. A.	k. A.	k. A.	k. A.	k.
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	μg/l	k. A.	k. A.	k. A.	k. A.	k.
	Fluoranthen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Benzo(b)fluoranthen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Benzo(k)fluoranthen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Naphthalin	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	1-Methylnaphthalin	mg/l	k. A.	k. A.	k. A.	k. A.	k.
	2-Methylnaphtalin	mg/l	k. A.	k. A.	k. A.	k. A.	k.
	Benzo(ghi)perylen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Pyren	μg/l	<0,01	k. A.	k. A.	k. A.	<u>k.</u>
	Benzo(a)pyren	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Chrysen	μg/l	<0,01	k. A.	k. A.	k. A.	<u>k.</u>
	Dibenz(ah)anthracen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Indeno(1,2,3-cd)pyren	μg/l	<0,01	k. A.	k. A.	k. A.	k.
2335	Anthracen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
		μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Benzo(a)anthracen Phenanthren	μg/I	<0,01	k. A.	k. A.	k. A.	k.

Bericht des Jahres 2024

Regionale Arbeitsgruppe 5 (Ruhr), Friedlicher Nachbar -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023

Blatt 3 yon 3

			der Wasser				Blatt 3 von
toffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	23.03.2023	06.06.2023	16.08.2023	12.12.2023	Prognose ²⁾
2346	Acenaphthylen	μg/l	<0,01	k. A.	k. A.	k. A.	k. <i>i</i>
2347	Acenaphthen	μg/l	<0,01	k. A.	k. A.	k. A.	k. <i>I</i>
	Polycylische aromatische Kohlenwasserstoffe						
	(PAK) in der Originalprobe (Fluoranthen,						
2350	Benzo(a)pyren, Benzo(b)Fluoranthen,						
	Benzo(k)fluoranthen, Benzo(ghi)perylen,						
	Indeno(1,2,3-cd)pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
2400	Toluol	μg/l	k. A.	k. A.	k. A.	k. A.	k
2410	o-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	k.
2415	Ethylbenzol	μg/l	k. A.	k. A.	k. A.	k. A.	k.
2426	PCB-10	μg/l	k. A.	k. A.	k. A.	k. A.	k.
2426	PCB-10	mg/kg	k. A.	k. A.	k. A.	k. A.	k.
2669	Bisphenol A	mg/l	k. A.	k. A.	k. A.	k. A.	k.
2853	Perfluorbutansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k.
2854	Perfluorpentansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k.
2855	Perfluorhexansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k.
2856	Perfluorheptansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k.
2857	Perfluornonansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k.
2858	Perfluordekansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k.
2859	Perfluorundekansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k.
2860	Perfluordodekansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k.
2896	m-Xylol und p-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	k.
2913	XYLOL (SUMME DER GEHALTE AN O,M,P-XYLOL)	μg/l	k. A.	k. A.	k. A.	k. A.	k
2949	Acrylamid	μg/l	<0,1	k. A.	k. A.	k. A.	k.
	BTXE	μg/l	k. A.	k. A.	k. A.	k. A.	k.
3001	Methan	mg/l	k. A.	k. A.	k. A.	k. A.	k.
3002	Freies CO2	mmol/l	k. A.	k. A.	k. A.	k. A.	k.
4007	Perfluoroktansulfonsäure Isomeren	μg/l	<0,1	k. A.	k. A.	k. A.	k.
4008	Perfluoroktansäure Isomeren	μg/l	<0,1	k. A.	k. A.	k. A.	k.
4009	Perfluorbutansulfonsäre Isomeren	μg/l	<0,1	k. A.	k. A.	k. A.	k.
4010	Perfluorhexansulfonsäure Isomeren	μg/l	<0,1	k. A.	k. A.	k. A.	k.
4084	Perfluordecylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k.
	H4-Perfluoroctylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k.
4103	1H,1H,2H,2H-Perfluorhexansulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k.
4104	Perfluorheptansulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k.
4105	1H, 1H, 2H, 2H-Perfluordecansulfonsäure	μg/l	<0,5	k. A.	k. A.	k. A.	k.
	Summe PAK TVO (SUMME: Benzo-(b)-						
4356	fluoranthen, Benzo-(k)-fluoranthen, Benzo-						
	(ghi)-perylen und Indeno-(1,2,3-cd)-pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k.
4357	Summe PAK EPA	μg/l	k. A.	k. A.	k. A.	k. A.	k
4380	Summe PAK EPA ohne Naphthalin	μg/l	k. A.	k. A.	k. A.	k. A.	k
	Perfluortridecansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k
	Perfluorpentansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	k
	Perfluornonansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	k.
	Perfluorundekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	k.
	Perfluordodekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	k.
	Perfluortridekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	k
	PCB-4	mg/kg	k. A.	k. A.	k. A.	k. A.	k
	PCB-4	μg/l	k. A.	k. A.	k. A.	k. A.	k
	Summe PCB-4+PCB-10	μg/l	k. A.	k. A.	k. A.	k. A.	k.
	Summe PCB-4+PCB-10	mg/kg	k. A.	k. A.	k. A.	k. A.	k.

^{1) =} Um ein stets einheitliches Erscheinungsbild und spätere Vergleichbarkeit mit früheren Berichtsperioden zu ermöglichen, sind sämtliche Parameter des Parameterkatalogs A (Maximalumfang) aufgeführt. Soweit jeweils nur Teilprogramme bei der Probenahme absolviert wurden, ist in der jeweils für den Probenahmetermin einschlägigen Spalte zu den nicht untersuchten Parametern "k. A." eingetragen worden.

²⁾ = keine Prognose vorhanden, angegeben ist Mittelwert 2010 - 2022 laut Erlaubnisantrag 24.04.2024

Regionale Arbeitsgruppe 5 (Ruhr), Friedlicher Nachbar -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024

Blatt 1 von 3

7 . , 5 5	ergebnisse der amtlichen Uberw	uonang				•	Blatt 1 von 3
Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	14.03.2024	15.05.2024	18.09.2024	13.12.2024	Prognose ²⁾
901	Wasservolumen	- 1	k. A.	k. A.	k. A.	k. A.	k. A
	Wassertemperatur	°C	k. A.	k. A.	k. A.	k. A.	k. A
	Trübung	[-]	k. A.	k. A.	k. A.	k. A.	k. A
	Färbung	[-]	k. A.	k. A.	k. A.	k. A.	k. A
	pH-Wert	[-]	7,84	7,59	7,65	7,88	8,147
1072	Redoxpotential	mV μS/cm	k. A. 2230	k. A. 4990	k. A. 2470	k. A. 2550	k. A k. A
	Elektrische Leitfähigkeit Lithium	•	k. A.	0,6	0,25	0,29	k. A
	Natrium	μg/l mg/l	348	931	430	425	436,1
	Kalium	mg/l	18	22	19	17	19,4
	Magnesium	mg/l	48	51	55	49	43,
	Calcium in der Originalprobe	mg/l	89	118	102	90	87,
	Strontium	μg/l	1,4	4,5	1,6	1,5	1,3
1124	Barium in der Originalprobe	mg/l	0,1	0,5	0,1	0,12	0,441
1131	Aluminium in der Originalprobe	mg/l	k. A.	<0,03	<0,03	<0,03	k. A
1132	Thallium in der Originalprobe	μg/l	k. A.	<0,2	<0,2	<0,2	k. A
1137	Zinn in der Originalprobe	mg/l	k. A.	<0,001	<0,001	<0,001	k. A
	Blei in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,00
	Vanadium in der Originalprobe	mg/l	k. A.	<0,001	<0,001	<0,001	k. A
	Arsen	μg/l	1	<1	0,001	1	0,0
	Antimon in der Originalprobe	mg/l	k. A.	<0,001	k. A.	<0,001	k. A
	Blei 210	mBq/L	k. A.	<57	<34	<30	k. A
	Chrom in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,676
	Chrom (VI) Molybdän	mg/l μg/l	k. A. k. A.	<0,01 <1	<0,01 <1	<0,01 <0,001	k. A k. A
	Thorium 228	μg/I mBq/I	k. A.	k. A.	k. A.	k. A.	k. A
	Kupfer in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,148
	Zink in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,0089
	Cadmium in der Originalprobe	mg/l	<0,005	<0,005	<0,03	<0,005	0,000
	Quecksilber in der Originalprobe	mg/l	k. A.	<0,0002	k. A.	<0,0002	k. A
	Uran, in der Originalprobe	μg/l	k. A.	0,4	0,5	0,0006	k. A
	Radon 222	mBq/L	k. A.	k. A.	k. A.	<2600	k. A
1171	Mangan in der Originalprobe	mg/l	0,48	0,36	0,62	0,53	0,004
1173	Radium 226	mBq/L	k. A.	<19	<18	<14	k. A
1174	Radium 228	mBq/L	k. A.	<15	<17	<18	k. A
	Uran 235	mBq/L	k. A.	<15	<13	<10	k. A
	Uran 238	mBq/L	k. A.	<170	<76	<70	k. A
	Radium 224	mBq/L	k. A.	k. A.	k. A.	k. A.	k. A
	Eisen in der Originalprobe	mg/l	3	0,26	4,4	3,6	2,93
	Kobalt	μg/l	k. A.	<1	<1	<1	k. A
	Nickel in der Originalprobe Kalium 40	mg/l mBq/L	<0,03 k. A.	<0,03 k. A.	<0,03 k. A.	<0,03 k. A.	0,0045 k. A
	Cäsium 137	mBq/L	k. A.	k. A.	k. A.	k. A.	k. A
	Polonium 210	mBq/L	k. A.	2,1	<1	<1,1	k. A
1211		mg/l	0,62	0,96	0,9	0,79	1,0655
	Selen, in der Originalprobe	μg/l	k. A.	<1	<1	<1	k. A
	Hydrogencarbonat	mg/l	757	901	813	k. A.	799,3
1231	Cyanid, gesamt, in der Originalprobe	mg/l	k. A.	<0,01	0,007	k. A.	k. A
1244	Nitrat	mg/l	<1	<1	<1	<1	0,302
1245	Nitratstickstoff (NO3-N)	mg/l	<0,3	<0,3	<0,3	<0,3	k. A
	Nitrit	mg/l	0,013	0,012	0,13	0,05	k. A
	Nitritstickstoff (NO-2-N)	mg/l	<0,005	<0,005	k. A.	0,015	0,013
	Ammoniumstickstoff (NH4-N)	mg/l	0,56	0,85	0,67	0,65	0,7142
	Gesamt-Phosphat	mg/l	k. A.	k. A.	<0,04	0,06	k. A
1262	, 8,	mg/l	<0,5	<0,5	<0,5	<0,5	k. A
	Ortho-Phosphat	mg/l	k. A.	k. A.	<0,04	<0,04	k. A
1264	Orthophosphat-Phosphor	mg/l	k. A.	k. A.	<0,02	<0,02	0,078
1269	Phosphorverbindungen als Phosphor, gesamt,						
4301	in der Originalprobe	mg/l	k. A.	k. A.	k. A.	<0,02	k. A
1281	Sauerstoff, in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	7,92
1283	Sauerstoffsättigungsindex, in der Originalprobe	0/:	le A	ا ما	l. A	L A	l. A
1200	Sauerstoffsattigungsindex, in der Originalprobe Sulfid, leicht freisetzbar	% mg/l	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A k. A
	Sulfid, leicht freisetzbar Sulfid	mg/l mg/l	k. A. k. A.	K. A. <0,005	k. A.	k. A.	k. A
	Sulfat	mg/I mg/I	280	<0,005 207	K. A. 285	340	269,2
	Fluorid, gesamt, in der Originalprobe	mg/l	k. A.	0,3	0,28	0,35	k. A
	Bromid	mg/l	<2	2	<2		0,01
	Jodid	mg/l	k. A.	0,089	0,02	0,027	k. A
1027	Chlorid	mg/l	235	1140	229	253	300,9:

Bericht des Jahres 2024

Regionale Arbeitsgruppe 5 (Ruhr), Friedlicher Nachbar -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024

a							- 2)
Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	14.03.2024	15.05.2024	18.09.2024	13.12.2024	Prognose ²⁾
1441	Abfiltrierbare Stoffe (suspendierte Stoffe) in						
1470	der Originalprobe	mg/l	6	5	2 42 24	k. A.	17,0
	Säurekapazität bis pH 4,3 Basekapazität bis pH 4,3	mmol/l mmol/l	12,67 k. A.	14,77 k. A.	13,21 k. A.	14,17 k. A.	k. /
	Säurekapazität bis pH 8,2	mmol/l	0,13	<0,05	<0,05	0,12	k. i
	Basekapazität bis pH 8,2	mmol/l	k. A.	k. A.	k. A.	k. A.	k
	Carbonathärte	mmol/l	k. A.	k. A.	k. A.	k. A.	k. /
	Organischer Kohlenstoff, gelöst	mg/l	k. A.	k. A.	k. A.	k. A.	k. /
	Organischer gebundener Kohlenstoff, gesamt	6/	M.7.II				
1523	(TOC), in der Originalprobe	mg/l	3	3	3	2	1,528
	Kohlenwasserstoffe, gesamt, in der	O,					
1552	Originalprobe	mg/l	<0,1	<0,1	<0,1	<0,1	k. /
1801	Gesamt-Alpha-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	27	k. /
1803	Gesamt-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>i</i>
1805	Rest-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	k. /
	Richtdosis (Trinkwasser)	mSv/a	k. A.	k. A.	k. A.	k. A.	k. /
	Trichlorethen	μg/l	k. A.	<0,1	k. A.	<0,1	k. /
2021	Tetrachlorethen	μg/l	k. A.	<0,1	k. A.	<0,1	k. /
2045	LHKW, Summe gem. AbwV Anhänge 9, 25, 40					_	
	und 54 als Cl	μg/l	k. A.	k. A.	k. A.	0	k. /
	Benzol	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
	PCB-28	mg/kg	k. A.	k. A.	k. A.	k. A.	0,01
	PCB-28	μg/l	k. A.	<0,01	k. A.	<0,01	<0,0
	PCB-52	μg/l	k. A.	<0,01	k. A.	<0,01	<0,0
	PCB-52 PCB-101	mg/kg mg/kg	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	0,01
	PCB-101 PCB-101	μg/l	k. A. k. A.	<0,01	k. A.	<0,01	<0,0
	PCB-138	mg/kg	k. A.	k. A.	k. A.	k. A.	0,01
	PCB-138	μg/l	k. A.	<0,01	k. A.	<0,01	<0,0
	PCB-153	mg/kg	k. A.	k. A.	k. A.	k. A.	0,0
	PCB-153	μg/l	k. A.	<0,01	k. A.	<0,01	<0,0
	PCB-180	μg/l	k. A.	<0,01	k. A.	<0,01	<0,0
	PCB-180	mg/kg	k. A.	k. A.	k. A.	k. A.	0,008
	PCB-118	μg/l	k. A.	k. A.	k. A.	<0,01	<0,0
	PCB-118	mg/kg	k. A.	k. A.	k. A.	k. A.	0,01
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /
2181	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
2182	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /
2182	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	mg/kg	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. /
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80 2',3,4,6'-Tetracl-6-me-dm:TCBT 80	mg/kg	k. A. k. A.	k. A.	k. A.	k. A.	k. /
	Fluoranthen	μg/l μg/l	k. A.	<0,01	k. A.	0,06	k.
	Benzo(b)fluoranthen	μg/I	k. A.	<0,01	k. A.	<0,00	k. /
	Benzo(k)fluoranthen	μg/I	k. A.	<0,01	k. A.	<0,01	k
	Naphthalin	μg/I	k. A.	<0,01	k. A.	<0,01	k.
	1-Methylnaphthalin	mg/l	k. A.	k. A.	k. A.	<0,01	k.
	2-Methylnaphtalin	mg/l	k. A.	k. A.	k. A.	<0,01	k.
	Benzo(ghi)perylen	μg/l	k. A.	<0,01	k. A.	<0,01	k.
	Pyren	μg/l	k. A.	<0,01	k. A.	0,09	k.
	Benzo(a)pyren	μg/l	k. A.	<0,01	k. A.	<0,01	k.
	Chrysen	μg/l	k. A.	<0,01	k. A.	<0,01	k.
	Dibenz(ah)anthracen	μg/l	k. A.	<0,01	k. A.	<0,01	k.
	Indeno(1,2,3-cd)pyren	μg/l	k. A.	<0,01	k. A.	<0,01	k.
	Anthracen	μg/l	k. A.	<0,01	k. A.	<0,01	k.
	Benzo(a)anthracen	μg/l	k. A.	<0,01	k. A.	<0,01	k.
	Phenanthren	μg/l	k. A.	<0,01	k. A.	0,06	k.
	Fluoren	μg/l	k. A.	<0,01	k. A.	<0,01	k

Regionale Arbeitsgruppe 5 (Ruhr), Friedlicher Nachbar -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024

Blatt 3 von 3

toffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	14.03.2024	15.05.2024	18.09.2024	13.12.2024	Prognose ²⁾
2346	Acenaphthylen	μg/l	k. A.	<0,01	<0,01	<0,01	k.
2347	Acenaphthen	μg/l	k. A.	<0,01	<0,01	<0,01	k.
	Polycylische aromatische Kohlenwasserstoffe						
	(PAK) in der Originalprobe (Fluoranthen,						
2350	Benzo(a)pyren, Benzo(b)Fluoranthen,						
	Benzo(k)fluoranthen, Benzo(ghi)perylen,						
	Indeno(1,2,3-cd)pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k
2400	Toluol	μg/l	k. A.	k. A.	k. A.	k. A.	k
2410	o-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	-
2415	Ethylbenzol	μg/l	k. A.	k. A.	<1	<1	- 1
2426	PCB-10	μg/l	k. A.	k. A.	k. A.	k. A.	
2426	PCB-10	mg/kg	k. A.	k. A.	k. A.	k. A.	-
2669	Bisphenol A	mg/l	k. A.	<0,00001	0,01	<0,01	
2853	Perfluorbutansäure	μg/l	k. A.	<0,1	<0,1	<0,1	
2854	Perfluorpentansäure	μg/l	k. A.	<0,1	<0,1	<0,1	
2855	Perfluorhexansäure	μg/l	k. A.	<0,1	<0,1	<0,1	
2856	Perfluorheptansäure	μg/l	k. A.	<0,1	<0,1	<0,1	
2857	Perfluornonansäure	μg/l	k. A.	<0,1	<0,1	<0,1	
2858	Perfluordekansäure	μg/l	k. A.	<0,1	<0,1	<0,1	
2859	Perfluorundekansäure	μg/l	k. A.	<0,2	<0,2	<0,2	
2860	Perfluordodekansäure	μg/l	k. A.	<0,1	k. A.	<0,1	
2896	m-Xylol und p-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	
	XYLOL (SUMME DER GEHALTE AN O,M,P-XYLOL)	μg/l	k. A.	k. A.	k. A.	k. A.	
	Acrylamid	μg/l	k. A.	<0,1	<0,1	<0,1	
	BTXE	μg/l	k. A.	k. A.	k. A.	k. A.	
	Methan	mg/l	k. A.	0,09	<0,01	<0,01	
	Freies CO2	mmol/l	k. A.	k. A.	k. A.	k. A.	
	Perfluoroktansulfonsäure Isomeren	μg/l	k. A.	<0.1	<0,1	<0.1	
	Perfluoroktansäure Isomeren	μg/l	k. A.	<0.1	k. A.	<0.1	
	Perfluorbutansulfonsäre Isomeren	μg/l	k. A.	<0,1	<0,1	<0,1	
	Perfluorhexansulfonsäure Isomeren	μg/l	k. A.	<0,1	<0,1	<0,1	
	Perfluordecylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	
	H4-Perfluoroctylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	
	1H,1H,2H,2H-Perfluorhexansulfonsäure	μg/l	k. A.	k. A.	<0,1	<0,1	
	Perfluorheptansulfonsäure	μg/l	k. A.	k. A.	<0,1	<0.1	
	1H, 1H, 2H, 2H-Perfluordecansulfonsäure	μg/I	k. A.	<0,1	<0,2	<0,2	
4103	Summe PAK TVO (SUMME: Benzo-(b)-	μ ₆ / ι	к. д.	₹0,1	\0,Z	₹0,2	
4356	fluoranthen, Benzo-(k)-fluoranthen, Benzo-						
4550	(ghi)-perylen und Indeno-(1,2,3-cd)-pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	
4357	Summe PAK EPA	μg/I	k. A.	k. A.	0,05	0,21	
	Summe PAK EPA ohne Naphthalin	μg/I	k. A.	k. A.	k. A.	k. A.	
	Perfluortridecansäure	μg/I	k. A.	k. A.	k. A.	<0.5	
	Perfluorpentansulfonsäure inkl. Isomere	μg/I	k. A.	k. A.	k. A.	<0,1	
	Perfluornonansulfonsäure inkl. Isomere	μg/I	k. A.	k. A.	k. A.	<0,1	
	Perfluoring answere mki. Isomere Perfluorundekansulfonsäure inkl. Isomere	μg/I μg/I	k. A.	K. A. <0.5	k. A.	<0,5	
	Perfluordodekansulfonsäure inkl. Isomere	μg/I μg/I	k. A.	k. A.	k. A.	<0,5	
	Perfluortridekansulfonsäure inkl. Isomere	μg/I μg/I	k. A.	k. A.	k. A.	<0,5	
	PCB-4	μg/ι mg/kg	k. A. k. A.	k. A.	k. A.	<0,5 k. A.	
	PCB-4				k. A.	k. A. k. A.	
		μg/l	k. A.	k. A.			
	Summe PCB-4 + PCB-10 Summe PCB-4 + PCB-10	μg/l mg/kg	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	

^{1) =} Um ein stets einheitliches Erscheinungsbild und spätere Vergleichbarkeit mit früheren Berichtsperioden zu ermöglichen, sind sämtliche Parameter des Parameterkatalogs A (Maximalumfang) aufgeführt. Soweit jeweils nur Teilprogramme bei der Probenahme absolviert wurden, ist in der jeweils für den Probenahmetermin einschlägigen Spalte zu den nicht untersuchten Parametem "k. A." eingetragen worden.

 $^{^{2)}}$ = keine Prognose vorhanden, angegeben ist Mittelwert 2010 - 2022 laut Erlaubnisantrag 24.04.2024

Bericht des Jahres 2024

Regionale Arbeitsgruppe 5 (Ruhr), Heinrich -

Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023

DIa#	1	MOD	-

toffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	23.03.2023	06.06.2023	16.08.2023	12.12.2023	Prognose ²⁾
001	Wasservolumen	- 1	k. A.	k. A.	k. A.	k. A.	k.
	Wassertemperatur	°C	k. A.	k. A.	k. A.	k. A.	k.
	Trübung	[-]	k. A.	k. A.	k. A.	k. A.	k
	Färbung	[-]	k. A.	k. A.	k. A.	k. A.	k
	pH-Wert	[-]	7,76	7,36	7,34	7,52	7
	Redoxpotential	mV	k. A.	k. A.	k. A.	k. A.	k
	Elektrische Leitfähigkeit	μS/cm	2950	1820	1710	2410	k
	Lithium	μg/l	32	k. A.	k. A.	k. A.	k
1112	Natrium	mg/l	498	346	330	399	370
1113	Kalium	mg/l	17	16	16	15	1
1121	Magnesium	mg/l	42	33	32	39	3
1122	Calcium in der Originalprobe	mg/l	96	78	79	91	84
	Strontium	μg/l	2,3	1,6	1,6	2	:
	Barium in der Originalprobe	mg/l	0,19	0,19	0,14	0,21	0,2
	Aluminium in der Originalprobe	mg/l	<0,03	k. A.	k. A.	k. A.	k
	Thallium in der Originalprobe	μg/l	<0,2	k. A.	k. A.	k. A.	k
	Zinn in der Originalprobe	mg/l	<0,001	k. A.	k. A.	k. A.	k
	Blei in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,0
	Vanadium in der Originalprobe	mg/l	<0,001	k. A.	k. A.	k. A.	k
	Artimon in der Original probe	μg/l	<1 <0,001	<1	<1	<1	0,0
	Antimon in der Originalprobe Blei 210	mg/l		k. A. k. A.	k. A. k. A.	k. A. k. A.	
		mBq/L	k. A. <0,03	K. A. <0,03	K. A. <0,03	K. A. <0,03	0,0
	Chrom in der Originalprobe Chrom (VI)	mg/l mg/l	<0,03	k. A.	k. A.	₹0,03 k. A.	U,C
	Molybdän	μg/l	<1	k. A.	k. A.	k. A.	
	Thorium 228	mBq/l	k. A.	k. A.	k. A.	k. A.	
	Kupfer in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,0
	Zink in der Originalprobe	mg/l	0,07	0,08	0,03	0,09	0,0
	Cadmium in der Originalprobe	mg/l	<0,005	<0,005	<0,005	<0,005	0,0
	Quecksilber in der Originalprobe	mg/l	<0,0002	k. A.	k. A.	k. A.	-
	Uran, in der Originalprobe	μg/l	0,4	k. A.	k. A.	k. A.	
	Radon 222	mBq/L	k. A.	k. A.	k. A.	k. A.	-
1171	Mangan in der Originalprobe	mg/l	0,21	0,15	0,07	0,23	0,2
1173	Radium 226	mBq/L	k. A.	k. A.	k. A.	k. A.	-
1174	Radium 228	mBq/L	k. A.	k. A.	k. A.	k. A.	ŀ
1176	Uran 235	mBq/L	k. A.	k. A.	k. A.	k. A.	l
1177	Uran 238	mBq/L	k. A.	k. A.	k. A.	k. A.	
	Radium 224	mBq/L	k. A.	k. A.	k. A.	k. A.	
	Eisen in der Originalprobe	mg/l	1,8	0,35	0,46	2	
	Kobalt	μg/l	<1	k. A.	k. A.	k. A.	
	Nickel in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,0
	Kalium 40	mBq/L	k. A.	k. A.	k. A.	k. A.	
	Cäsium 137	mBq/L	k. A.	k. A.	k. A.	k. A.	
1196	Polonium 210	mBq/L	k. A.	k. A.	k. A.	k. A.	
	Selen, in der Originalprobe	mg/l	0,62 <1	0,68 k. A.	0,62 k. A.	0,44 k. A.	0,
	Hydrogencarbonat	μg/l mg/l	567	589	588	558	5
	Cyanid, gesamt, in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	J
	Nitrat	mg/l	2	1	1	<1	1,0
	Nitratstickstoff (NO3-N)	mg/l	0,5	<0,3	<0,3	<0,3	
	Nitrit	mg/l	0,005	0,014	0,006	<0,005	
	Nitritstickstoff (NO-2-N)	mg/l	<0,005	<0,005	<0,005	<0,005	0,
	Ammoniumstickstoff (NH4-N)	mg/l	0,27	<0,1	<0,1	0,26	0,
	Gesamt-Phosphat	mg/l	k. A.	k. A.	k. A.	k. A.	
	Phosphor, gesamt, in der Originalprobe	mg/l	<0,5	<0,5	<0,5	<0,5	
	Ortho-Phosphat	mg/l	k. A.	k. A.	k. A.	k. A.	
1264	Orthophosphat-Phosphor	mg/l	k. A.	k. A.	k. A.	k. A.	0,
1200	Phosphorverbindungen als Phosphor, gesamt,						
1269	in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	
1281	Sauerstoff, in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	
1202							
1283	Sauerstoffsättigungsindex, in der Originalprobe	%	k. A.	k. A.	k. A.	k. A.	
1309	Sulfid, leicht freisetzbar	mg/l	k. A.	k. A.	k. A.	k. A.	
1311	Sulfid	mg/l	<0,005	k. A.	k. A.	k. A.	
	Sulfat	mg/l	220	180	150	190	19
	Fluorid, gesamt, in der Originalprobe	mg/l	0,5	k. A.	k. A.	k. A.	
1224	Bromid	mg/l	<2	<2	<2	<2	1,
	Jodid		0,023				

Regionale Arbeitsgruppe 5 (Ruhr), Heinrich -

2324 Chrysen

2335 Anthracen

2340 Phenanthren

2345 Fluoren

2325 Dibenz(ah)anthracen

2330 Indeno(1,2,3-cd)pyren

2336 Benzo(a)anthracen

Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023

Blatt 2 von 3 06.06.2023 16.08.2023 Stoffnummer Stoffname - Parameterkatalog A¹⁾ Einheit 23.03.2023 12.12.2023 Prognose²⁾ Abfiltrierbare Stoffe (suspendierte Stoffe) in der Originalprobe mg/l 13,53 1472 Säurekapazität bis pH 4,3 mmol/l 9,29 9,66 9,64 9,15 k. A. 1473 Basekapazität bis pH 4,3 mmol/l k. A. k. A. k. A. k. A. k. A. 1476 Säurekapazität bis pH 8,2 mmol/l <0.05 < 0.05 < 0.05 < 0.05 k. A. k. A 1477 Basekapazität bis pH 8,2 mmol/I k. A. k. A. k. A. k. A 1484 Carbonathärte k. A. k. A k. A mmol/I k. A. k. A 1521 Organischer Kohlenstoff, gelöst k. A k. A k. A k. A k. A mg/l Organischer gebundener Kohlenstoff, gesamt 1523 (TOC), in der Originalprobe mg/l 1,82 Kohlenwasserstoffe, gesamt, in der 1552 Originalprobe mg/l <0,1 <0,1 <0,1 <0,1 k. A 1801 Gesamt-Alpha-Aktivitätskonzentration mBq/L k. A. k. A. k. A. k. A. k. A 1803 Gesamt-Beta-Aktivitätskonzentration mBq/L k. A. k. A k. A k. A k. A 1805 Rest-Beta-Aktivitätskonzentration k. A. k. A. k. A. k. A k. A mBq/L 1806 Richtdosis (Trinkwasser) mSv/a k. A. k. A k. A k. A k. A 2020 Trichlorethen <0,1 k. A k. A k. A k. A μg/l 2021 Tetrachlorethen μg/l <0,1 k. A. k. A. k. A k. A. 2045 LHKW, Summe gem. AbwV Anhänge 9, 25, 40 und 54 als Cl μg/l k. A k. A k. A 2048 Benzol μg/l kΑ kΑ kΑ kΑ kΑ 2071 PCB-28 mg/kg k. A. k. A. k. A. k. A. k. A 2071 PCB-28 μg/l < 0.01 k. A. k. A. k. A. < 0.02 2072 PCB-52 μg/l < 0.01 k. A. k. A. k. A. < 0.02 2072 PCB-52 mg/kg k. A. k. A. k. A. k. A. k. A. 2073 PCB-101 mg/kg k. A. k. A. k. A. k. A. k. A. 2073 PCB-101 μg/l <0,01 k. A. k. A. k. A <0,02 2074 PCB-138 mg/kg k. A. k. A. k. A. k. A k. A. <0,02 2074 PCB-138 μg/l <0,01 k. A. k. A. k. A. k. A. k. A 2076 PCB-153 k. A. k. A. k. A. mg/kg <0,01 k. A. k. A <0,02 2076 PCB-153 k. A. μg/l 2077 PCB-180 k. A. k. A. k. A μg/l <0,01 <0,02 2077 PCB-180 k. A. k. A. k. A k. A k. A. mg/kg 2079 PCB-118 k. A. k. A k. A. k. A <0,02 μg/l k. A. 2079 PCB-118 mg/kg k. A. k. A k. A k. A 2181 2,2',4,5'-Tetracl-5-me-dm:TCBT 25 k. A. k. A k. A k. A mg/kg k. A 2181 2,2',4,5'-Tetracl-5-me-dm:TCBT 25 μg/l k. A. k. A. k. A. k. A k. A 2182 2,2',5,5'-Tetracl-4-me-dm:TCBT 36 k. A. k. A k. A. k. A k. A mg/kg 2182 2,2',5,5'-Tetracl-4-me-dm:TCBT 36 k. A. k. A. k. A. k. A k. A μg/l 2183 3,3',4,4'-Tetracl-2-me-dm:TCBT 87 μg/l k. A. k. A. k. A. k. A k. A 2183 3,3',4,4'-Tetracl-2-me-dm:TCBT 87 mg/kg k. A. kΑ k. A. kΑ k. A 2185 2.2'.4.4'-Tetracl-3-me-dm:TCBT 21 μg/l kΑ kΑ kΑ kΑ kΑ 2185 2.2'.4.4'-Tetracl-3-me-dm:TCBT 21 mg/kg k. A. k. A. k. A. k. A. k. A 2186 2,2',4,4'-Tetracl-5-me-dm:TCBT 22 mg/kg k. A. k. A. k. A. k. A. k. A 2186 2,2',4,4'-Tetracl-5-me-dm:TCBT 22 μg/l k. A. k. A. k. A. k. A. k. A. 2187 2,2',4,6'-Tetracl-3-me-dm:TCBT 27 mg/kg k. A. k. A. k. A. k. A k. A. 2187 2,2',4,6'-Tetracl-3-me-dm:TCBT 27 μg/l k. A. k. A. k. A. k. A k. A. 2189 2,2',4,6'-Tetracl-5-me-dm:TCBT 28 μg/l k. A. k. A. k. A. k. A k. A. 2189 2,2',4,6'-Tetracl-5-me-dm:TCBT 28 mg/kg k. A. k. A. k. A. k. A k. A. k. A 2191 2,3',4,4'-Tetracl-5-me-dm:TCBT 52 μg/l k. A. k. A. k. A. k. A. 2191 2,3',4,4'-Tetracl-5-me-dm:TCBT 52 k. A. k. A. k. A. k. A k. A. mg/kg 2193 2',3,4,4'-Tetracl-6-me-dm:TCBT 74 k. A. k. A. k. A. k. A k. A. μg/l 2193 2',3,4,4'-Tetracl-6-me-dm:TCBT 74 k. A. k. A k. A. k. A k. A mg/kg k. A. k. A k. A 2195 2',3,4,6'-Tetracl-6-me-dm:TCBT 80 k. A k. A. mg/kg 2195 2',3,4,6'-Tetracl-6-me-dm:TCBT 80 k. A. k. A k. A k. A k. A μg/l 2300 Fluoranthen μg/l <0,01 k. A. k. A. k. A k. A 2301 Benzo(b)fluoranthen μg/l <0,01 k. A k. A. k. A k. A k. A 2302 Benzo(k)fluoranthen μg/l <0,01 k. A k. A. k. A 2305 Naphthalin k. A k. A. k. A k. A μg/l <0,01 2306 1-Methylnaphthalin k. A. k. A. k. A. k. A k. A. mg/l 2307 2-Methylnaphtalin mg/l k. A. k. A. k. A. k. A. k. A 2310 Benzo(ghi)perylen <0,01 k. A. k. A. k. A k. A μg/l 2319 Pyren μg/l <0,01 k. A. k. A. k. A k. A μg/l 2320 Benzo(a)pyren <0,01 k. A. k. A. k. A k. A.

μg/l

μg/l

μg/l

μg/l

μg/l

μg/l

μg/l

<0,01

<0,01

< 0.01

<0,01

< 0.01

<0,01

< 0.01

k. A.

k. A

k. A

k. A.

k. A.

k. A

k. A.

k. A.

k. A.

k. A

k. A.

k. A.

k. A.

k. A.

k. A

k. A

k. A

k. A.

k. A

k. A.

k. A.

k. A.

k. A.

k. A.

k. A.

k. A

k. A.

Bericht des Jahres 2024

Regionale Arbeitsgruppe 5 (Ruhr), Heinrich -

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	23.03.2023	06.06.2023	16.08.2023	12.12.2023	Prognose ²⁾
2346	Acenaphthylen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Acenaphthen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Polycylische aromatische Kohlenwasserstoffe	Po/	,				
	(PAK) in der Originalprobe (Fluoranthen,						
2350	Benzo(a)pyren, Benzo(b)Fluoranthen,						
	Benzo(k)fluoranthen, Benzo(ghi)perylen,						
	Indeno(1,2,3-cd)pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k.
2400	Toluol	μg/l	k. A.	k. A.	k. A.	k. A.	k.
	o-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	k.
	Ethylbenzol	μg/l	k. A.	k. A.	k. A.	k. A.	k
	PCB-10	μg/l	k. A.	k. A.	k. A.	k. A.	k
	PCB-10	mg/kg	k. A.	k. A.	k. A.	k. A.	
	Bisphenol A	mg/l	k. A.	k. A.	k. A.	k. A.	k
	Perfluorbutansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k
	Perfluorpentansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k
	Perfluorhexansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k
	Perfluorheptansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k
	Perfluornonansäure	μg/l	<0,1	k. A.	k. A.	k. A.	k
	Perfluordekansäure	μg/l	<0,1	k. A.	k. A.	k. A.	
	Perfluorundekansäure	μg/l	k. A.	k. A.	k. A.	k. A.	
	Perfluordodekansäure	μg/l	<0,1	k. A.	k. A.	k. A.	
	m-Xylol und p-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	
	XYLOL (SUMME DER GEHALTE AN O,M,P-XYLOL)	μg/l	k. A.	k. A.	k. A.	k. A.	
	Acrylamid	μg/l	<0,1	k. A.	k. A.	k. A.	
	BTXE	μg/l	k. A.	k. A.	k. A.	k. A.	
	Methan	mg/l	k. A.	k. A.	k. A.	k. A.	
	Freies CO2	mmol/l	k. A.	k. A.	k. A.	k. A.	
	Perfluoroktansulfonsäure Isomeren	μg/l	<0.1	k. A.	k. A.	k. A.	
	Perfluoroktansäure Isomeren	μg/I	<0,1	k. A.	k. A.	k. A.	, ,
	Perfluorbutansulfonsäre Isomeren	μg/I	<0,1	k. A.	k. A.	k. A.	, ,
	Perfluorhexansulfonsäure Isomeren	μg/I	<0,1	k. A.	k. A.	k. A.	, ,
	Perfluordecylsulfonsäure	μg/I	k. A.	k. A.	k. A.	k. A.	
	H4-Perfluoroctylsulfonsäure	μg/I	k. A.	k. A.	k. A.	k. A.	<u> </u>
	1H,1H,2H,2H-Perfluorhexansulfonsäure	μg/I μg/I	<0,1	k. A.	k. A.	k. A.	
	Perfluorheptansulfonsäure		k. A.	k. A.	k. A.	k. A.	, ,
	1H, 1H, 2H, 2H-Perfluordecansulfonsäure	μg/l μg/l	K. A. <0,5	k. A.	k. A.	k. A.	, ,
4103	Summe PAK TVO (SUMME: Benzo-(b)-	μg/ ι	<0,3	K. A.	K. A.	K. A.	
1256	fluoranthen, Benzo-(k)-fluoranthen, Benzo-						
4330	(ghi)-perylen und Indeno-(1,2,3-cd)-pyren)	ug/l	k. A.	k. A.	k. A.	k. A.	
1257	Summe PAK EPA	μg/l μg/l	k. A.	k. A.	k. A.	k. A.	, ,
	Summe PAK EPA ohne Naphthalin	μg/I	k. A.	k. A.	k. A.	k. A.	
	Perfluortridecansäure	μg/I	k. A.	k. A.	k. A.	k. A.	<u> </u>
	Perfluorentansulfonsäure inkl. Isomere		k. A.	k. A.	k. A.	k. A.	<u> </u>
	Perfluornonansulfonsäure inkl. Isomere	μg/l μg/l	k. A.	k. A.	k. A.	k. A.	
	Perfluorundekansulfonsäure inkl. Isomere		k. A.	k. A.	k. A.	k. A.	
		μg/l					
	Perfluordodekansulfonsäure inkl. Isomere	μg/l	k. A. k. A.	k. A. k. A.	k. A.	k. A.	<u> </u>
	Perfluortridekansulfonsäure inkl. Isomere	μg/l			k. A. k. A.	k. A. k. A.	
	PCB-4	mg/kg	k. A.	k. A.			<u> </u>
	PCB-4	μg/l	k. A.	k. A.	k. A.	k. A.	
	Summe PCB-4 + PCB-10 Summe PCB-4 + PCB-10	μg/l	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	, ,

^{1) =} Um ein stets einheitliches Erscheinungsbild und spätere Vergleichbarkeit mit früheren Berichtsperioden zu ermöglichen, sind sämtliche Parameter des Parameterkatalogs A (Maximalumfang) aufgeführt. Soweit jeweils nur Teilprogramme bei der Probenahme absolviert wurden, ist in der jeweils für den Probenahmetermin einschlägigen Spalte zu den nicht untersuchten Parametern "k. A." eingetragen worden.

²⁾ = keine Prognose vorhanden, angegeben ist Mittelwert 2010 - 2022 laut Erlaubnisantrag 24.04.2024

Regionale Arbeitsgruppe 5 (Ruhr), Heinrich -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024 Blatt 1 von 3

Stoffnummer	Stoffnama Daramatarkatalan A1)	Einheit	14.03.2024	25.06.2024	18.09.2024	13.12.2024	Prognose ²⁾
Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einneit	14.03.2024	25.06.2024	18.09.2024	13.12.2024	Prognose ²⁷
	Wasservolumen	I	k. A.	k. A.	k. A.	k. A.	k. A
	Wassertemperatur	°C	k. A.	k. A.	k. A.	k. A.	k. A
	Trübung	[-]	k. A.	k. A.	k. A.	k. A.	k. A
	Färbung pH-Wert	[-] [-]	k. A. 7,17	k. A. 7,08	k. A. 7,17	k. A. 7,17	k. <i>A</i>
	Redoxpotential	mV	k. A.	k. A.	k. A.	k. A.	k. A
	Elektrische Leitfähigkeit	μS/cm	1990	2580	2630	1760	k. A
	Lithium	μg/I	k. A.	0,03	0,032	0,17	k. <i>A</i>
	Natrium	mg/l	319	434	486	246	370,4
1113	Kalium	mg/l	17	17	20	13	15,
1121	Magnesium	mg/l	34	42	44	28	33,
1122	Calcium in der Originalprobe	mg/l	79	93	99	69	84,2
	Strontium	μg/l	1,5	2	2,2	1,4	1,7
	Barium in der Originalprobe	mg/l	0,13	0,2	0,2	0,12	0,274
	Aluminium in der Originalprobe	mg/l	k. A.	<0,03	<0,03	<0,03	k. <i>F</i>
	Thallium in der Originalprobe	μg/l	k. A.	<0,2	<0,2	<0,2	k. <i>F</i>
	Zinn in der Originalprobe	mg/l	k. A.	<0,001	<0,001	<0,001	k. A
	Blei in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,003
	Vanadium in der Originalprobe	mg/l	k. A. <1	<0,001 <1	<0,001	<0,001 <1	k. <i>A</i> 0,001
	Arsen Antimon in der Originalprobe	μg/l mg/l	k. A.	<0,001	k. A.	<0,001	k. A
	Blei 210	mBq/L	k. A.	<25	<30	<23	k. /
	Chrom in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,010
	Chrom (VI)	mg/l	k. A.	<0,01	<0,01	<0,01	k. <i>A</i>
	Molybdän	μg/l	k. A.	<1	<0,001	<0,001	k. <i>A</i>
1157	Thorium 228	mBq/l	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
1161	Kupfer in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,074
	Zink in der Originalprobe	mg/l	0,05	0,05	<0,05	0,04	0,073
	Cadmium in der Originalprobe	mg/l	<0,005	<0,005	k. A.	<0,005	0,000
	Quecksilber in der Originalprobe	mg/l	k. A.	<0,0002	k. A.	<0,0002	k. /
	Uran, in der Originalprobe	μg/l	k. A.	0,4	0,3	0,4	k. /
	Radon 222	mBq/L	k. A.	k. A.	<4,4	<2600	k. <i>F</i>
	Mangan in der Originalprobe	mg/l	0,17	0,36	0,36	0,09	0,250
	Radium 226 Radium 228	mBq/L	k. A. k. A.	<19 <15	<17 <15	<21 <14	k. <i>F</i> k. <i>F</i>
	Uran 235	mBq/L mBq/L	k. A.	<10	<11	<9	k. <i>F</i>
	Uran 238	mBq/L	k. A.	<96	<71	<124	k. /
	Radium 224	mBq/L	k. A.	k. A.	k. A.	k. A.	k. /
	Eisen in der Originalprobe	mg/l	0,93	3,3	3	0,35	3,
1186	Kobalt	μg/l	k. A.	<1	<1	<1	k. <i>A</i>
1188	Nickel in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,001
1193	Kalium 40	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	Cäsium 137	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	Polonium 210	mBq/L	k. A.	<1	<1,8	<1,1	k. <i>F</i>
1211		mg/l	0,65	0,52	0,58	0,61	0,459
	Selen, in der Originalprobe	μg/l	k. A.	<1	<1	<1	k. <i>F</i>
	Hydrogencarbonat	mg/l	560	569	591	589	576,
	Cyanid, gesamt, in der Originalprobe	mg/l	k. A. <1	<0,01 <1	<0,005 <1	k. A.	k. <i>A</i> 1,073
	Nitrat Nitratstickstoff (NO3-N)	mg/l mg/l	<0,3	<0,3	<0,3	<0,3	1,073 k. A
	Nitrit	mg/l	<0,005	0,005	0.006	0.005	k. /
	Nitritstickstoff (NO-2-N)	mg/l	<0,005	<0,005	k. A.	<0,005	0,010
	Ammoniumstickstoff (NH4-N)	mg/l	0,18	0,38	0,4	<0,1	0,287
	Gesamt-Phosphat	mg/l	k. A.	k. A.	<0,04	<0,04	k. <i>A</i>
1262	Phosphor, gesamt, in der Originalprobe	mg/l	<0,5	<0,5	<0,5	<0,5	k. <i>A</i>
	Ortho-Phosphat	mg/l	k. A.	k. A.	<0,04	<0,04	k. <i>A</i>
	Orthophosphat-Phosphor	mg/l	k. A.	k. A.	<0,02	<0,02	0,082
	Phosphorverbindungen als Phosphor, gesamt,						
1269	in der Originalprobe	mg/l	k. A.	k. A.	k. A.	<0,02	k. <i>l</i>
1281	Sauerstoff, in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	
1283							
	Sauerstoffsättigungsindex, in der Originalprobe	%	k. A.	k. A.	k. A.	k. A.	k. A
	Sulfid, leicht freisetzbar	mg/l	k. A.	k. A.	k. A.	k. A.	k. /
	Sulfid	mg/l	k. A.	<0,005	k. A.	k. A.	k. /
	Sulfat	mg/l	245	270	140	161	197,5
	Fluorid, gesamt, in der Originalprobe	mg/l	k. A.	0,2	0,18	0,19	k. A
400-		mg/l	<2	<2	<2	<2	1,575
1324	Jodid	mg/l	k. A.	0,021	0,025	0,025	k. /

Bericht des Jahres 2024

Regionale Arbeitsgruppe 5 (Ruhr), Heinrich -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024

Ctoffnummer	Ct-#	Einheit	14.02.2024	25.06.2024	19.00.2024	12 12 2024	D2)
Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einneit	14.03.2024	25.06.2024	18.09.2024	13.12.2024	Prognose ²⁾
1441	Abfiltrierbare Stoffe (suspendierte Stoffe) in						
1.472	der Originalprobe	mg/l	1	0.22	k. A.	k. A.	13,5
	Säurekapazität bis pH 4,3	mmol/l	9,18 k. A.	9,33	9,69	9,65	k. A
	Basekapazität bis pH 4,3 Säurekapazität bis pH 8,2	mmol/l mmol/l	K. A. <0,05	k. A. <0,05	k. A. <0,05	k. A. <0,05	k. A
	Basekapazität bis pH 8,2	mmol/l	k. A.	k. A.	k. A.	k. A.	k. A
	Carbonathärte	mmol/l	k. A.	k. A.	k. A.	k. A.	k. A
	Organischer Kohlenstoff, gelöst	mg/l	k. A.	k. A.	k. A.	k. A.	k. A
	Organischer gebundener Kohlenstoff, gesamt	, , , , , , , , , , , , , , , , , , ,					
1523	(TOC), in der Originalprobe	mg/l	2	2	3	<2	1,83
1552	Kohlenwasserstoffe, gesamt, in der						
1552	Originalprobe	mg/l	<0,1	<0,1	<0,1	<0,1	k. A
	Gesamt-Alpha-Aktivitätskonzentration	mBq/L	k. A.	k. A.	30	13	k. A
	Gesamt-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	k. A
	Rest-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	k. A
	Richtdosis (Trinkwasser)	mSv/a	k. A.	k. A.	k. A.	k. A.	k. A
	Trichlorethen Tetrachlorethen	μg/l	k. A. k. A.	<0,1 <0,1	<0,1 <0,1	<0,1 <0,1	k. A k. A
2021	Tetrachlorethen LHKW, Summe gem. AbwV Anhänge 9, 25, 40	μg/l	K. A.	<0,1	<0,1	<0,1	K. A
2045	und 54 als Cl	μg/l	k. A.	k. A.	0	0	k. A
2048	Benzol	μg/I	k. A.	k. A.	k. A.	k. A.	k. A
	PCB-28	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	PCB-28	μg/l	k. A.	<0,01	<0,01	<0,01	<0,0
	PCB-52	μg/l	k. A.	<0,01	<0,01	<0,01	<0,0
	PCB-52	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
2073	PCB-101	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
2073	PCB-101	μg/l	k. A.	<0,01	<0,01	<0,01	<0,02
2074	PCB-138	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	PCB-138	μg/l	k. A.	<0,01	<0,01	<0,01	<0,0
	PCB-153	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	PCB-153	μg/l	k. A.	<0,01	<0,01	<0,01	<0,0
	PCB-180	μg/l	k. A.	<0,01	<0,01	<0,01	<0,02
	PCB-180	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	PCB-118 PCB-118	μg/l mg/kg	k. A. k. A.	<0,01 k. A.	<0,01 k. A.	<0,01 k. A.	<0,02 k. A
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	mg/kg mg/kg	k. A.	k. A.	k. A.	k. A. k. A.	k. A.
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
2183	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',4,6'-Tetrad-3-me-dm:TCBT 27	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28 2,2',4,6'-Tetracl-5-me-dm:TCBT 28	μg/l mg/kg	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A k. A
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	mg/kg μg/l	k. A.	k. A.	k. A.	k. A. k. A.	k. A
	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
2195	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
2195	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
2300	Fluoranthen	μg/l	k. A.	<0,01	<0,01	0,08	k. A
2301	Benzo(b)fluoranthen	μg/l	k. A.	<0,01	<0,01	<0,01	k. A
	Benzo(k)fluoranthen	μg/l	k. A.	<0,01	<0,01	<0,01	k. A
	Naphthalin	μg/l	k. A.	<0,01	<0,01	<0,01	k. A
	1-Methylnaphthalin	mg/l	k. A.	k. A.	<0,01	<0,01	k. A
	2-Methylnaphtalin	mg/l	k. A.	k. A.	<0,01	<0,01	k. A
	Benzo(ghi)perylen	μg/l	k. A. k. A.	<0,01 <0,01	<0,01 <0,01	<0,01 0,05	k. A
	Pyren Benzo(a)pyren	μg/l	k. A. k. A.	<0,01	<0,01	<0,05	k. A k. A
	Chrysen	μg/l μg/l	k. A. k. A.	<0,01	<0,01	<0,01	k. A
	Dibenz(ah)anthracen	μg/I	k. A.	<0,01	<0,01	<0,01	k. A
	Indeno(1,2,3-cd)pyren	μg/l	k. A.	<0,01	<0,01	<0,01	k. A
	Anthracen	μg/l	k. A.	<0,01	<0,01	0,02	k. A
	Benzo(a)anthracen	μg/l	k. A.	<0,01	<0,01	<0,01	k. A
	Phenanthren	μg/l	k. A.	<0,01	<0,01	0,11	k. A
	Fluoren	μg/l	k. A.	<0,01	<0,01	<0,01	k. A

Regionale Arbeitsgruppe 5 (Ruhr), Heinrich -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024

Blatt 3 von 3

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	14.03.2024	25.06.2024	18.09.2024	13.12.2024	Prognose ²⁾
2346	Acenaphthylen	μg/l	k. A.	<0,01	<0,01	0,02	k. /
2347	Acenaphthen	μg/l	k. A.	<0,01	<0,01	<0,01	k. /
	Polycylische aromatische Kohlenwasserstoffe						
	(PAK) in der Originalprobe (Fluoranthen,						
2350	Benzo(a)pyren, Benzo(b)Fluoranthen,						
	Benzo(k)fluoranthen, Benzo(ghi)perylen,						
	Indeno(1,2,3-cd)pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
2400	Toluol	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
2410	o-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2415	Ethylbenzol	μg/l	k. A.	k. A.	<1	<1	k. <i>I</i>
2426	PCB-10	μg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2426	PCB-10	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
2669	Bisphenol A	mg/l	k. A.	k. A.	<0,01	<0,01	k. <i>A</i>
2853	Perfluorbutansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. <i>A</i>
2854	Perfluorpentansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
2855	Perfluorhexansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
2856	Perfluorheptansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. <i>A</i>
2857	Perfluornonansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. <i>A</i>
2858	Perfluordekansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. <i>A</i>
2859	Perfluorundekansäure	μg/l	k. A.	<0,1	<0,2	<0,2	k. <i>A</i>
	Perfluordodekansäure	μg/l	k. A.	<0,1	k. A.	<0,1	k. <i>A</i>
2896	m-Xylol und p-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2913	XYLOL (SUMME DER GEHALTE AN O,M,P-XYLOL)	μg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2949	Acrylamid	μg/l	k. A.	<0,1	<0,1	<0,1	k. <i>A</i>
	BTXE	μg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Methan	mg/l	k. A.	<0,01	<0,01	<0,01	k. <i>A</i>
	Freies CO2	mmol/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
4007	Perfluoroktansulfonsäure Isomeren	μg/l	k. A.	<0,1	<0,1	<0,1	k. <i>A</i>
	Perfluoroktansäure Isomeren	μg/l	k. A.	<0,1	k. A.	<0,1	k. <i>A</i>
	Perfluorbutansulfonsäre Isomeren	μg/l	k. A.	<0,1	<0,1	<0.1	k. <i>A</i>
	Perfluorhexansulfonsäure Isomeren	μg/l	k. A.	<0,1	<0,1	<0,1	k. <i>A</i>
	Perfluordecylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	H4-Perfluoroctylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	1H,1H,2H,2H-Perfluorhexansulfonsäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. <i>A</i>
	Perfluorheptansulfonsäure	μg/l	k. A.	k. A.	<0,1	<0,1	k. <i>A</i>
	1H, 1H, 2H, 2H-Perfluordecansulfonsäure	μg/l	k. A.	k. A.	<0.2	<0.2	k. /
	Summe PAK TVO (SUMME: Benzo-(b)-	PO/				,_	
4356	fluoranthen, Benzo-(k)-fluoranthen, Benzo-						
	(ghi)-perylen und Indeno-(1,2,3-cd)-pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
4357	Summe PAK EPA	μg/l	k. A.	k. A.	k. A.	0,28	k. /
	Summe PAK EPA ohne Naphthalin	μg/l	k. A.	k. A.	0	k. A.	k. /
	Perfluortridecansäure	μg/l	k. A.	k. A.	k. A.	<0,5	k. /
	Perfluorpentansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	<0.1	k. /
	Perfluornonansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	<0.5	k. /
	Perfluorundekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	<0,5	k. /
	Perfluordodekansulfonsäure inkl. Isomere	μg/l	k. A.	<0,5	k. A.	<0,5	k. /
	Perfluortridekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	<0,5	k. /
	PCB-4	mg/kg	k. A.	k. A.	k. A.	k. A.	k.
	PCB-4	μg/l	k. A.	k. A.	k. A.	k. A.	k.
	Summe PCB-4+ PCB-10	μg/I	k. A.	k. A.	k. A.	k. A.	k.
	Summe PCB-4+PCB-10	μg/ι mg/kg	k. A.	k. A.	k. A.	k. A.	k.

^{1) =} Um ein stets einheitliches Erscheinungsbild und spätere Vergleichbarkeit mit früheren Berichtsperioden zu ermöglichen, sind sämtliche Parameter des Parameterkatalogs A (Maximalumfang) aufgeführt. Soweit jeweils nur Teilprogramme bei der Probenahme absolviert wurden, ist in der jeweils für den Probenahmetermin einschlägigen Spalte zu den nicht untersuchten Parametern "k. A." eingetragen worden.

²⁾ = keine Prognose vorhanden, angegeben ist Mittelwert 2010 - 2022 laut Erlaubnisantrag 24.04.2024

Bericht des Jahres 2024

Regionale Arbeitsgruppe 5 (Ruhr), Robert Müser -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023

toffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	20.03.2023	06.06.2023	16.08.2023	12.12.2023	Prognose ²⁾
901	Wasservolumen	1	k. A.	k. A.	k. A.	k. A.	k.
1011	Wassertemperatur	°C	k. A.	k. A.	k. A.	k. A.	k.
	Trübung	[-]	k. A.	k. A.	k. A.	k. A.	k
	Färbung	[-]	k. A.	k. A.	k. A.	k. A.	k
	pH-Wert Redoxpotential	[-] mV	7,4 k. A.	7,54 k. A.	7,23 k. A.	7,66 k. A.	k
	Elektrische Leitfähigkeit	μS/cm	6620	5320	6030	6070	k
	Lithium	μg/I	k. A.	k. A.	k. A.	k. A.	k
	Natrium	mg/l	1250	968	1280	1120	1148
1113	Kalium	mg/l	25	19	24	20	20
1121	Magnesium	mg/l	51,3	54	62	53	48
	Calcium in der Originalprobe	mg/l	134	149	148	128	132
	Strontium	μg/l	6	5,2	6,4	5,5	
	Barium in der Originalprobe	mg/l	3	1,9	2	2	
	Aluminium in der Originalprobe	mg/l	<0,05	k. A.	k. A. k. A.	k. A. k. A.	k k
	Thallium in der Originalprobe Zinn in der Originalprobe	μg/l mg/l	k. A. k. A.	k. A. k. A.	k. A.	k. A.	
	Blei in der Originalprobe	mg/l	<0,005	<0,03	<0,03	<0,03	0,0
	Vanadium in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	k
	Arsen	μg/l	<5	<1	<1	<0,001	0,0
1145	Antimon in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	ļ
1149	Blei 210	mBq/L	k. A.	k. A.	k. A.	k. A.	ı
	Chrom in der Originalprobe	mg/l	k. A.	<0,03	<0,03	<0,03	0,0
	Chrom (VI)	mg/l	k. A.	k. A.	k. A.	k. A.	
	Molybdän	μg/l	k. A.	k. A.	k. A.	k. A.	
	Thorium 228	mBq/l	k. A.	k. A.	k. A.	k. A.	I
	Kupfer in der Originalprobe Zink in der Originalprobe	mg/l mg/l	<0,005 <0,01	<0,03 <0,03	<0,03 <0,03	<0,03 <0,03	0,0
	Cadmium in der Originalprobe	mg/l	<0,01	<0,03	<0,005	<0,005	0,0
	Quecksilber in der Originalprobe	mg/l	<0,0005	k. A.	k. A.	k. A.	
	Uran, in der Originalprobe	μg/l	k. A.	k. A.	k. A.	k. A.	
	Radon 222	mBq/L	k. A.	k. A.	k. A.	k. A.	
1171	Mangan in der Originalprobe	mg/l	0,23	0,25	0,2	0,25	0
	Radium 226	mBq/L	k. A.	k. A.	k. A.	k. A.	l
	Radium 228	mBq/L	k. A.	k. A.	k. A.	k. A.	
	Uran 235	mBq/L	k. A.	k. A.	k. A.	k. A.	
	Uran 238 Radium 224	mBq/L mBq/L	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	I
	Eisen in der Originalprobe	mg/l	0,1	0,08	0,13	0,56	-
	Kobalt	μg/l	k. A.	k. A.	k. A.	k. A.	-
	Nickel in der Originalprobe	mg/l	0,007	<0,03	<0,03	<0,03	0,0
	Kalium 40	mBq/L	k. A.	k. A.	k. A.	k. A.	
1195	Cäsium 137	mBq/L	k. A.	k. A.	k. A.	k. A.	
	Polonium 210	mBq/L	k. A.	k. A.	k. A.	k. A.	
1211		mg/l	1	0,98	0,99	0,98	0,9
	Selen, in der Originalprobe	μg/l	k. A.	k. A.	k. A.	k. A.	
	Hydrogencarbonat	mg/l	909	849	931	924	94
	Cyanid, gesamt, in der Originalprobe Nitrat	mg/l mg/l	k. A. <0,5	<0,01	<0,01 <1	<0,01 <1	
	Nitratstickstoff (NO3-N)	mg/l	<0,1	<0,3	<0,3	<0,3	
	Nitrit	mg/l	<0,02	0,05	0,009	0,016	
1247	Nitritstickstoff (NO-2-N)	mg/l	<0,006	0,015	<0,005	<0,005	0,0
	Ammoniumstickstoff (NH4-N)	mg/l	0,08	0,78	0,85	0,85	1,0
1261	Gesamt-Phosphat	mg/l	k. A.	k. A.	k. A.	k. A.	
	Phosphor, gesamt, in der Originalprobe	mg/l	<0,05	<0,5	<0,5	<0,5	
	Ortho-Phosphat	mg/l	k. A.	k. A.	k. A.	k. A.	
1264	Orthophosphat-Phosphor	mg/l	k. A.	k. A.	k. A.	k. A.	0,
1269	Phosphorverbindungen als Phosphor, gesamt,						
1201	in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	
1281	Sauerstoff, in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	
1283	Sauerstoffsättigungsindex, in der Originalprobe	%	k. A.	k. A.	k. A.	k. A.	
1309	Sulfid, leicht freisetzbar	mg/l	k. A.	k. A.	k. A.	k. A.	
	Sulfid	mg/l	k. A.	k. A.	k. A.	k. A.	
	Sulfat	mg/l	90	140	103	105	11
	Fluorid, gesamt, in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	
1324	Bromid	mg/l	3,5	3	3	2	
	Jodid	mg/l	k. A.	k. A.	k. A.	k. A.	

Regionale Arbeitsgruppe 5 (Ruhr), Robert Müser -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023 Blatt 2 von 3

Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	20.03.2023	06.06.2023	16.08.2023	12.12.2023	Prognose ²⁾
Otolinaninei	Stollianie - Parameterkatalog A	Lillieit	20.03.2023	00.00.2023	10.00.2023	12.12.2025	Flogilose
1441	Abfiltrierbare Stoffe (suspendierte Stoffe) in						
	der Originalprobe	mg/l	k. A.	<1	<1	3	2,8
	Säurekapazität bis pH 4,3	mmol/l	14,9	13,92	15,26	15,14	k. /
	Basekapazität bis pH 4,3	mmol/l	k. A.	k. A.	k. A.	k. A.	k. A
	Säurekapazität bis pH 8,2	mmol/l	<0,02	<0,05	<0,05	<0,05	k. A
	Basekapazität bis pH 8,2	mmol/l	k. A.	k. A.	k. A.	k. A.	k. A
	Carbonathärte	mmol/l	k. A.	k. A.	k. A.	k. A.	k. A
1521	Organischer Kohlenstoff, gelöst	mg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
1523	Organischer gebundener Kohlenstoff, gesamt	m a /I	1 5	2	4	2	1.0
	(TOC), in der Originalprobe Kohlenwasserstoffe, gesamt, in der	mg/l	1,5	3	4	2	1,8
1552	Originalprobe	mg/l	<0,1	<0,1	<0,1	<0,1	k. <i>A</i>
1801	Gesamt-Alpha-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	Gesamt-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	Rest-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	Richtdosis (Trinkwasser)	mSv/a	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Trichlorethen	μg/l	<0,1	k. A.	k. A.	k. A.	k. <i>A</i>
	Tetrachlorethen	μg/l	<0,1	k. A.	k. A.	k. A.	k. <i>A</i>
	LHKW, Summe gem. AbwV Anhänge 9, 25, 40	1 0.	,				
2045	und 54 als Cl	μg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2048	Benzol	μg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2071	PCB-28	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2071	PCB-28	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
2072	PCB-52	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
2072	PCB-52	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
2073	PCB-101	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2073	PCB-101	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
2074	PCB-138	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
2074	PCB-138	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
2076	PCB-153	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
2076	PCB-153	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
2077	PCB-180	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
2077	PCB-180	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	PCB-118	μg/l	<0,01	k. A.	k. A.	k. A.	<0,0
	PCB-118	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25	μg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21 2,2',4,4'-Tetracl-5-me-dm:TCBT 22	mg/kg mg/kg	k. A.	k. A.	k. A. k. A.	k. A.	k. A
		U, U	k. A. k. A.	k. A.		k. A. k. A.	k. <i>F</i>
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	μg/l	k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. <i>F</i>
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	mg/kg	k. A.	k. A.	k. A.	k. A. k. A.	
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27 2,2',4,6'-Tetracl-5-me-dm:TCBT 28	μg/l	k. A.	k. A.	k. A.	k. A. k. A.	k. <i>F</i> k. <i>F</i>
	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	μg/l mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	2,3',4,4'-Tetraci-5-me-dm:TCBT 52	μg/l	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
2191	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	μg/I	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	mg/kg	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	μg/I	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	Fluoranthen	μg/l	<0,01	k. A.	k. A.	k. A.	k. <i>F</i>
	Benzo(b)fluoranthen	μg/l	<0,01	k. A.	k. A.	k. A.	k. <i>F</i>
	Benzo(k)fluoranthen	μg/l	<0,01	k. A.	k. A.	k. A.	k. <i>F</i>
	Naphthalin	μg/l	<0,01	k. A.	k. A.	k. A.	k. /
	1-Methylnaphthalin	mg/l	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	2-Methylnaphtalin	mg/l	k. A.	k. A.	k. A.	k. A.	k. /
	Benzo(ghi)perylen	μg/l	<0,01	k. A.	k. A.	k. A.	k. /
	Pyren	μg/l	<0,01	k. A.	k. A.	k. A.	k. /
	Benzo(a)pyren	μg/l	<0,01	k. A.	k. A.	k. A.	k. /
	Chrysen	μg/l	<0,01	k. A.	k. A.	k. A.	k
	Dibenz(ah)anthracen	μg/l	<0,01	k. A.	k. A.	k. A.	k
	Indeno(1,2,3-cd)pyren	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Anthracen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Benzo(a)anthracen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Phenanthren	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Fluoren	μg/l	<0,01	k. A.	k. A.	k. A.	k.

Bericht des Jahres 2024

Regionale Arbeitsgruppe 5 (Ruhr), Robert Müser -Analysenergehnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2023

toffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	20.03.2023	06.06.2023	16.08.2023	12.12.2023	Prognose ²⁾
2346	Acenaphthylen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
2347	Acenaphthen	μg/l	<0,01	k. A.	k. A.	k. A.	k.
	Polycylische aromatische Kohlenwasserstoffe						
	(PAK) in der Originalprobe (Fluoranthen,						
2350	Benzo(a)pyren, Benzo(b)Fluoranthen,						
	Benzo(k)fluoranthen, Benzo(ghi)perylen,						
	Indeno(1,2,3-cd)pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k.
2400	Toluol	μg/l	k. A.	k. A.	k. A.	k. A.	k
2410	o-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	k
2415	Ethylbenzol	μg/l	k. A.	k. A.	k. A.	k. A.	k
	PCB-10	μg/l	k. A.	k. A.	k. A.	k. A.	k
	PCB-10	mg/kg	k. A.	k. A.	k. A.	k. A.	k
	Bisphenol A	mg/l	k. A.	k. A.	k. A.	k. A.	k
	Perfluorbutansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k
	Perfluorpentansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k
	Perfluorhexansäure	μg/l	k. A.	k. A.	k. A.	k. A.	k
	Perfluorheptansäure	μg/l	k. A.	k. A.	k. A.	k. A.	
	Perfluornonansäure	μg/l	k. A.	k. A.	k. A.	k. A.	
	Perfluordekansäure	μg/I	k. A.	k. A.	k. A.	k. A.	
	Perfluorundekansäure	μg/I	k. A.	k. A.	k. A.	k. A.	, ,
	Perfluordodekansäure	μg/I μg/I	k. A.	k. A.	k. A.	k. A.	
	m-Xylol und p-Xylol	μg/I	k. A.	k. A.	k. A.	k. A.	
	XYLOL (SUMME DER GEHALTE AN O,M,P-XYLOL)	μg/I	k. A.	k. A.	k. A.	k. A.	
			k. A.	k. A.	k. A.	k. A.	
	Acrylamid BTXE	μg/l				k. A.	
		μg/l	k. A.	k. A.	k. A.	-	
	Methan	mg/l	k. A.	k. A.	k. A.	k. A.	
	Freies CO2	mmol/l	k. A.	k. A.	k. A.	k. A.	
	Perfluoroktansulfonsäure Isomeren	μg/l	k. A.	k. A.	k. A.	k. A.	
	Perfluoroktansäure Isomeren	μg/l	k. A.	k. A.	k. A.	k. A.	- 1
	Perfluorbutansulfonsäre Isomeren	μg/l	k. A.	k. A.	k. A.	k. A.	
	Perfluorhexansulfonsäure Isomeren	μg/l	k. A.	k. A.	k. A.	k. A.	
	Perfluordecylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	-
	H4-Perfluoroctylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	
	1H,1H,2H,2H-Perfluorhexansulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	
	Perfluorheptansulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	l
4105	1H, 1H, 2H, 2H-Perfluordecansulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	I
	Summe PAK TVO (SUMME: Benzo-(b)-						
4356	fluoranthen, Benzo-(k)-fluoranthen, Benzo-						
	(ghi)-perylen und Indeno-(1,2,3-cd)-pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	l
4357	Summe PAK EPA	μg/l	k. A.	k. A.	k. A.	k. A.	
4380	Summe PAK EPA ohne Naphthalin	μg/l	k. A.	k. A.	k. A.	k. A.	
4471	Perfluortridecansäure	μg/l	k. A.	k. A.	k. A.	k. A.	I
4560	Perfluorpentansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	
4561	Perfluornonansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	
4562	Perfluorundekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	I
4563	Perfluordodekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	-
	Perfluortridekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	k. A.	
	PCB-4	mg/kg	k. A.	k. A.	k. A.	k. A.	
	PCB-4	μg/l	k. A.	k. A.	k. A.	k. A.	
	Summe PCB-4 + PCB-10	μg/l	k. A.	k. A.	k. A.	k. A.	
	Summe PCB-4 + PCB-10	mg/kg	k. A.	k. A.	k. A.	k. A.	

^{1) =} Um ein stets einheitliches Erscheinungsbild und spätere Vergleichbarkeit mit früheren Berichtsperioden zu ermöglichen, sind sämtliche Parameter des Parameterkatalogs A (Maximalumfang) aufgeführt. Soweit jeweils nur Teilprogramme bei der Probenahme absolviert wurden, ist in der jeweils für den Probenahmetermin einschlägigen Spalte zu den nicht untersuchten Parametern "k. A." eingetragen worden.

²⁾ = keine Prognose vorhanden, angegeben ist Mittelwert 2010 - 2022 laut Erlaubnisantrag 24.04.2024

Regionale Arbeitsgruppe 5 (Ruhr), Robert Müser -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024

Blatt 1 von 3

	0						Blatt 1 von 3
Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	14.03.2024	15.05.2024	18.09.2024	13.12.2024	Prognose*
	Wasservolumen	I	k. A.	k. A.	k. A.	k. A.	k. A
	Wassertemperatur	°C	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Trübung	[-]	k. A.	k. A.	k. A.	k. A.	k. <i>F</i>
	Färbung	[-]	k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	pH-Wert	[-]	7,34	7,97	7,36	7,29	7,
	Redoxpotential Elektrische Leitfähigkeit	mV μS/cm	k. A. 4240	k. A. 2440	k. A. 5080	k. A. 5240	k. <i>F</i>
	Lithium	μз/сті μg/l	4240 k. A.	0,32	0,51	0,53	k. <i>F</i>
	Natrium	mg/l	736	419	949	890	1148,8
	Kalium	mg/l	17	24	20	18	20,9
	Magnesium	mg/l	46	52	54	49	48,6
	Calcium in der Originalprobe	mg/l	135	96	135	120	132,3
1123	Strontium	μg/l	4,1	1,5	4,8	0,44	5,5
1124	Barium in der Originalprobe	mg/l	0,58	0,12	0,48	0,49	1,9
1131	Aluminium in der Originalprobe	mg/l	k. A.	<0,03	<0,03	<0,03	k. <i>i</i>
1132	Thallium in der Originalprobe	μg/l	k. A.	<0,2	<0,2	<0,2	k. <i>A</i>
	Zinn in der Originalprobe	mg/l	k. A.	<0,001	<0,001	<0,001	k. <i>A</i>
	Blei in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,004
	Vanadium in der Originalprobe	mg/l	k. A.	<0,001	<0,001	<0,001	k. /
	Arsen	μg/l	<1	1	<1	<1	0,004
	Antimon in der Originalprobe	mg/l	k. A.	<0,001	k. A.	<0,001	k. A
	Blei 210	mBq/L	k. A.	<35	<28	<33	k. A
	Chrom in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,034
	Chrom (VI) Molybdän	mg/l μg/l	k. A. k. A.	<0,01 <1	<0,01 <1	<0,01 <0,001	k. <i>F</i> k. <i>F</i>
	Thorium 228	μg/I mBq/I	k. A. k. A.	k. A.	k. A.	k. A.	k. <i>A</i>
	Kupfer in der Originalprobe	mg/l	<0,03	<0,03	<0,03	<0,03	0,020
	Zink in der Originalprobe	mg/l	<0,01	<0,03	<0,03	<0,03	0,044
	Cadmium in der Originalprobe	mg/l	<0,005	<0,005	k. A.	<0,005	0,001
	Quecksilber in der Originalprobe	mg/l	k. A.	<0,0002	k. A.	<0,0002	k. A
	Uran, in der Originalprobe	μg/l	k. A.	0,5	0,4	0,6	k. <i>A</i>
	Radon 222	mBq/L	k. A.	k. A.	2,2	<2400	k. <i>A</i>
1171	Mangan in der Originalprobe	mg/l	0,33	0,52	0,32	0,28	0,23
1173	Radium 226	mBq/L	k. A.	<26	<13	<2,4	k. <i>A</i>
	Radium 228	mBq/L	k. A.	<16	<19	<14	k. <i>A</i>
	Uran 235	mBq/L	k. A.	<12	<11	<12	k. <i>A</i>
	Uran 238	mBq/L	k. A.	<85	<114	<114	k. <i>A</i>
	Radium 224	mBq/L	k. A.	k. A.	k. A.	k. A.	k. A
	Eisen in der Originalprobe	mg/l	0,43	3,2	0,22	0,14	3,
	Kobalt	μg/l	k. A.	<1	<1	<1	k. A
	Nickel in der Originalprobe Kalium 40	mg/l	<0,03	<0,03	<0,03	<0,03	0,001
	Cäsium 137	mBq/L mBq/L	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. A. k. A.	k. <i>F</i> k. <i>F</i>
	Polonium 210	mBq/L	k. A.	1,6	<1	5,7	k. <i>F</i>
1211		mg/l	0,64	0,82	1	0,85	0,936
	Selen, in der Originalprobe	μg/l	k. A.	<1	<1	<1	k. <i>F</i>
	Hydrogencarbonat	mg/l	817	676	900	912	948,5
	Cyanid, gesamt, in der Originalprobe	mg/l	k. A.	<0,01	<0,005	k. A.	k. <i>A</i>
	Nitrat	mg/l	2	<1	<1	<1	1,
1245	Nitratstickstoff (NO3-N)	mg/l	0,5	<0,3	<0,3	<0,3	k. <i>A</i>
1246	Nitrit	mg/l	0,034	0,013	0,11	0,022	k. /
1247	Nitritstickstoff (NO-2-N)	mg/l	0,01	<0,005	k. A.	0,0067	0,011
1249	Ammoniumstickstoff (NH4-N)	mg/l	0,68	0,8	0,93	0,85	1,054
	Gesamt-Phosphat	mg/l	k. A.	k. A.	<0,04	<0,04	k. <i>A</i>
1262	Phosphor, gesamt, in der Originalprobe	mg/l	<0,5	<0,5	<0,5	<0,5	k. /
	Ortho-Phosphat	mg/l	k. A.	k. A.	<0,04	<0,04	k. /
	Orthophosphat-Phosphor	mg/l	k. A.	k. A.	<0,02	<0,02	0,091
12691	Phosphorverbindungen als Phosphor, gesamt,						
	in der Originalprobe	mg/l	k. A.	k. A.	k. A.	<0,02	k. /
1281	Sauerstoff, in der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	k. /
1283	6						,
	Sauerstoffsättigungsindex, in der Originalprobe	%	k. A.	k. A.	k. A.	k. A.	k. /
	Sulfid, leicht freisetzbar	mg/l	k. A.	<0,005	k. A.	k. A.	k. /
	Sulfid	mg/l	k. A.	k. A.	k. A.	k. A.	k. /
	Sulfat	mg/l	230	293	130	190	117,3
	Fluorid, gesamt, in der Originalprobe	mg/l	k. A.	0,3	0,28	0,31	k. /
		ma/1	ما م	1	ا م	21	~ ~
1324	Bromid Jodid	mg/l mg/l	2 k. A.	<2 0,021	<2 0,1	2 0,097	3,3 k. /

Bericht des Jahres 2024

Regionale Arbeitsgruppe 5 (Ruhr), Robert Müser -

	0						
toffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	14.03.2024	15.05.2024	18.09.2024	13.12.2024	Prognose
1441	Abfiltrierbare Stoffe (suspendierte Stoffe) in						
1441	der Originalprobe	mg/l	k. A.	k. A.	k. A.	k. A.	
	Säurekapazität bis pH 4,3	mmol/l	13,39	11,08	14,75	14,94	ŀ
	Basekapazität bis pH 4,3	mmol/l	k. A.	k. A.	k. A.	k. A.	ŀ
	Säurekapazität bis pH 8,2	mmol/l	<0,05	<0,05	<0,05	<0,05	
	Basekapazität bis pH 8,2	mmol/l	k. A.	k. A.	k. A.	k. A.	
	Carbonathärte	mmol/l	k. A.	k. A.	k. A.	k. A.	
1521	Organischer Kohlenstoff, gelöst	mg/l	k. A.	k. A.	k. A.	k. A.	
1523	Organischer gebundener Kohlenstoff, gesamt (TOC), in der Originalprobe	mg/l	3	3	4	2	
1552	Kohlenwasserstoffe, gesamt, in der Originalprobe	mg/l	<0,1	<0,1	<0,1	<0,1	
1801	Gesamt-Alpha-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	28	
1803	Gesamt-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	
	Rest-Beta-Aktivitätskonzentration	mBq/L	k. A.	k. A.	k. A.	k. A.	
	Richtdosis (Trinkwasser)	mSv/a	k. A.	k. A.	k. A.	k. A.	
	Trichlorethen	μg/l	k. A.	<0,1	<0,1	<0,1	
2021	Tetrachlorethen	μg/l	k. A.	<0,1	<0,1	<0,1	
2045	LHKW, Summe gem. AbwV Anhänge 9, 25, 40 und 54 als Cl	μg/l	k. A.	k. A.	0	0	
2048	Benzol	μg/l	k. A.	k. A.	k. A.	k. A.	
2071	PCB-28	mg/kg	k. A.	k. A.	k. A.	k. A.	
	PCB-28	μg/l	k. A.	<0,01	<0,01	<0,01	
2072	PCB-52	μg/l	k. A.	<0,01	<0,01	<0,01	
2072	PCB-52	mg/kg	k. A.	k. A.	k. A.	k. A.	
	PCB-101	mg/kg	k. A.	k. A.	k. A.	k. A.	
	PCB-101	μg/l	k. A.	<0,01	<0,01	<0,01	
	PCB-138	mg/kg	k. A.	k. A.	k. A.	k. A.	
	PCB-138	μg/l	k. A.	<0,01	<0,01	<0,01	
	PCB-153	mg/kg	k. A.	k. A.	k. A.	k. A.	
	PCB-153	μg/l	k. A.	<0,01	<0,01	<0,01	
	PCB-180	μg/l	k. A.	<0,01	<0,01	<0,01	
	PCB-180	mg/kg	k. A.	k. A.	k. A.	k. A.	
	PCB-118	μg/l	k. A.	k. A.	k. A.	<0,01	
	PCB-118	mg/kg	k. A. k. A.	k. A.	k. A. k. A.	k. A. k. A.	
	2,2',4,5'-Tetracl-5-me-dm:TCBT 25 2,2',4,5'-Tetracl-5-me-dm:TCBT 25	mg/kg μg/l	k. A.	k. A. k. A.	k. A.	k. A.	
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	mg/kg	k. A.	k. A.	k. A.	k. A.	
	2,2',5,5'-Tetracl-4-me-dm:TCBT 36	μg/I	k. A.	k. A.	k. A.	k. A.	
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	μg/I	k. A.	k. A.	k. A.	k. A.	
	3,3',4,4'-Tetracl-2-me-dm:TCBT 87	mg/kg	k. A.	k. A.	k. A.	k. A.	
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	μg/I	k. A.	k. A.	k. A.	k. A.	
	2,2',4,4'-Tetracl-3-me-dm:TCBT 21	mg/kg	k. A.	k. A.	k. A.	k. A.	
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	mg/kg	k. A.	k. A.	k. A.	k. A.	
	2,2',4,4'-Tetracl-5-me-dm:TCBT 22	μg/l	k. A.	k. A.	k. A.	k. A.	
	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	mg/kg	k. A.	k. A.	k. A.	k. A.	
2187	2,2',4,6'-Tetracl-3-me-dm:TCBT 27	μg/l	k. A.	k. A.	k. A.	k. A.	
2189	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	μg/l	k. A.	k. A.	k. A.	k. A.	
2189	2,2',4,6'-Tetracl-5-me-dm:TCBT 28	mg/kg	k. A.	k. A.	k. A.	k. A.	
2191	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	μg/l	k. A.	k. A.	k. A.	k. A.	
2191	2,3',4,4'-Tetracl-5-me-dm:TCBT 52	mg/kg	k. A.	k. A.	k. A.	k. A.	
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	μg/l	k. A.	k. A.	k. A.	k. A.	
	2',3,4,4'-Tetracl-6-me-dm:TCBT 74	mg/kg	k. A.	k. A.	k. A.	k. A.	
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	mg/kg	k. A.	k. A.	k. A.	k. A.	
	2',3,4,6'-Tetracl-6-me-dm:TCBT 80	μg/l	k. A.	k. A.	k. A.	k. A.	
	Fluoranthen	μg/l	k. A.	<0,01	<0,01	0,07	
	Benzo(b)fluoranthen	μg/l	k. A.	<0,01	<0,01	<0,01	
	Benzo(k)fluoranthen	μg/l	k. A.	<0,01	<0,01	<0,01	
	Naphthalin	μg/l	k. A.	<0,01	<0,01	<0,01	
	1-Methylnaphthalin	mg/l	k. A.	k. A.	k. A.	<0,01	
	2-Methylnaphtalin Benzo(ghi)perylen	mg/l	k. A. k. A.	k. A. <0,01	k. A. <0,01	<0,01 <0,01	
	Pyren	μg/l		<0,01	<0,01	0,01	
	Benzo(a)pyren	μg/l	k. A. k. A.	<0,01	<0,01	<0,05	
	Chrysen	μg/l μg/l	k. A.	<0,01	<0,01	<0,01	
	Dibenz(ah)anthracen	μg/I μg/I	k. A.	<0,01	<0,01	<0,01	
	Indeno(1,2,3-cd)pyren	μg/I μg/I	k. A.	<0,01	<0,01	<0,01	
	Anthracen	μg/I μg/I	k. A.	<0,01	<0,01	0,01	
	Benzo(a)anthracen	μg/I μg/I	k. A.	<0,01	<0,01	<0,02	
	Phenanthren	μg/I	k. A.	<0,01	<0,01	0,01	
234U	r nenanunen	μ <u></u> ξ/1	k. A. k. A.	<0,01	<0,01	<0,07	

Regionale Arbeitsgruppe 5 (Ruhr), Robert Müser -Analysenergebnisse der amtlichen Überwachung der Wasserhaltungen im Jahr 2024

Blatt 3 von 3

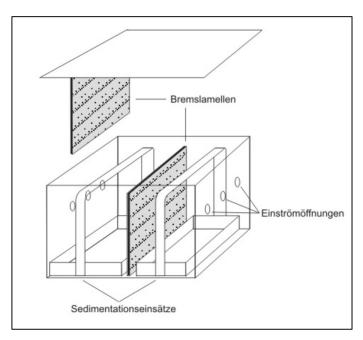
	ergebnisse der amtlichen Uberw			_			Blatt 3 von 3
Stoffnummer	Stoffname - Parameterkatalog A ¹⁾	Einheit	14.03.2024	15.05.2024	18.09.2024	13.12.2024	Prognose ²⁾
2346	Acenaphthylen	μg/l	k. A.	<0,01	<0,01	0,02	k. <i>A</i>
2347	Acenaphthen	μg/l	k. A.	<0,01	<0,01	<0,01	k. <i>i</i>
	Polycylische aromatische Kohlenwasserstoffe						
	(PAK) in der Originalprobe (Fluoranthen,						
2350	Benzo(a)pyren, Benzo(b)Fluoranthen,						
	Benzo(k)fluoranthen, Benzo(ghi)perylen,						
	Indeno(1,2,3-cd)pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	Toluol	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	o-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	Ethylbenzol	μg/l	k. A.	k. A.	k. A.	<1	k. A
	PCB-10	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	PCB-10	mg/kg	k. A.	k. A.	k. A.	k. A.	k. A
	Bisphenol A	mg/l	k. A.	<0,00001	<0,00001	<0,00001	k. A
	Perfluorbutansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	Perfluorpentansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	Perfluorhexansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	Perfluorheptansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	Perfluornonansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	Perfluordekansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	Perfluorundekansäure	μg/l	k. A.	<0,2	<0,2	<0,2	k. A
	Perfluordodekansäure	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	m-Xylol und p-Xylol	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	XYLOL (SUMME DER GEHALTE AN O,M,P-XYLOL)	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	Acrylamid	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	BTXE	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	Methan	mg/l	k. A.	<0,01	0,25	<0,01	k. A
	Freies CO2	mmol/l	k. A.	k. A.	k. A.	k. A.	k. A
	Perfluoroktansulfonsäure Isomeren	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	Perfluoroktansäure Isomeren	μg/l	k. A.	<0,1	k. A.	<0,1	k. A
	Perfluorbutansulfonsäre Isomeren	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	Perfluorhexansulfonsäure Isomeren	μg/l	k. A.	<0,1	<0,1	<0,1	k. A
	Perfluordecylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	H4-Perfluoroctylsulfonsäure	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	1H,1H,2H,2H-Perfluorhexansulfonsäure	μg/l	k. A.	k. A.	<0,1	<0,1	k. A
	Perfluorheptansulfonsäure	μg/l	k. A.	k. A.	<0,1	<0,1	k. A
4105	1H, 1H, 2H, 2H-Perfluordecansulfonsäure	μg/l	k. A.	<0,1	<0,2	<0,2	k. A
	Summe PAK TVO (SUMME: Benzo-(b)-						
4356	fluoranthen, Benzo-(k)-fluoranthen, Benzo-						
	(ghi)-perylen und Indeno-(1,2,3-cd)-pyren)	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	Summe PAK EPA	μg/l	k. A.	k. A.	k. A.	0,23	k. A
	Summe PAK EPA ohne Naphthalin	μg/l	k. A.	k. A.	k. A.	k. A.	k. A
	Perfluortridecansäure	μg/l	k. A.	k. A.	k. A.	<0,5	k. /
	Perfluorpentansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	<0,1	k. /
	Perfluornonansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	<0,5	k. /
	Perfluorundekansulfonsäure inkl. Isomere	μg/l	k. A.	<0,5	k. A.	<0,5	k. /
	Perfluordodekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	<0,5	k. /
	Perfluortridekansulfonsäure inkl. Isomere	μg/l	k. A.	k. A.	k. A.	<0,5	k. /
	PCB-4	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /
	PCB-4	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
	Summe PCB-4+PCB-10	μg/l	k. A.	k. A.	k. A.	k. A.	k. /
4576	Summe PCB-4+PCB-10	mg/kg	k. A.	k. A.	k. A.	k. A.	k. /

^{1) =} Um ein stets einheitliches Erscheinungsbild und spätere Vergleichbarkeit mit früheren Berichtsperioden zu ermöglichen, sind sämtliche Parameter des Parameterkatalogs A (Maximalumfang) aufgeführt. Soweit jeweils nur Teilprogramme bei der Probenahme absolviert wurden, ist in der jeweils für den Probenahmetermin einschlägigen Spalte zu den nicht untersuchten Parametern "k. A." eingetragen worden.

²⁾ = keine Prognose vorhanden, angegeben ist Mittelwert 2010 - 2022 laut Erlaubnisantrag 24.04.2024

Anhang 4 - Teil B

Analysenergebnisse von eingeleitetem Grubenwasser des LANUK NRW


Ergebnisse der amtlichen Überwachung durch das LANUV

In 2024 wurden die beiden derzeit aktiven Grubenwasserhaltungen in Duisburg Walsum und in Hörstel bei Ibbenbüren durch das LANUV beprobt. Die Probenahme erfolgte mit einem jeweils fest installierten Schwebstoffsedimentationskasten (SSK).

Probenahmetechnik:

Die Grundlage des Probenahmeverfahrens beruht auf der künstlichen Sedimentation der im Grubenwasser enthaltenen Schwebstoffe, indem die Durchflussgeschwindigkeit herabgesetzt wird. Dies wird erzielt durch Erhöhung des Durchflussquerschnitts und Verlängerung der Durchflussstrecke.

Speziell zur Schwebstoffprobenahme aus Grubenwasser gibt es noch keine genormten Verfahren bzw. Verfahrensanweisungen, aber es wird sich an den Vorgaben zur Probenahme von Schwebstoffen aus Oberflächengewässern orientiert. Zur Anwendung kommen Sedimentationskästen aus HDPE (Polyethylen hoher Dichte), wie sie bei der Schwebstoffprobenahme aus Oberflächengewässern bereits bekannt sind. In der Betriebsweise sind jedoch einige Unterschiede zu erkennen. Die Sedimentationskästen für Grubenwasser arbeiten bei einem Überdruck von bis zu 0,5 bar unter Luftabschluss. Der Grund liegt in der Beschaffenheit der Probenmatrix. Das Grubenwasser enthält neben den mit PCB

belasteten Schwebstoffen eine hohe Salzfracht an Chloriden, Sulfaten und Sulfiden. Zusätzlich ist das Grubenwasser stark eisenhaltig (Fe^{+II}/Fe^{+III}). Darüber hinaus wirkt es sehr korrosiv. Bei Reaktion mit Sauerstoff aus der Umgebungsluft würden große Mengen an Eisenhydroxid ($Fe(OH)_2$ & $Fe(OH)_3$) gebildet und ausfallen, wodurch die Messergebnisse stark beeinflusst werden würden.

Beschreibung der Durchführung einer Grubenwasser-Probenentnahme:

Nach Betreten der Probenahmestelle ist der Sedimentationskasten auf Unversehrtheit und ordnungsgemäßem Betrieb visuell zu überprüfen. Abweichungen in der Durchflussmenge, Undichtigkeit des Kastens oder ähnliches sind im Probenahmeprotokoll zu vermerken. Zusätzlich ist die fotographische Dokumentation empfohlen, bei Auffälligkeiten obligatorisch. Sollte der Sedimentationskasten in einwandfreiem Zustand sein, kann mit der Probenentnahme begonnen werden. Hierzu wird im ersten Schritt die Pumpe, z. B. durch Betätigen des Schlüsselschalters, abgestellt. Danach werden die Kugelhähne des Zu- und Ablaufes zugedreht. An der Kontrolleinheit des MIDs (Magnetisch-induktiver

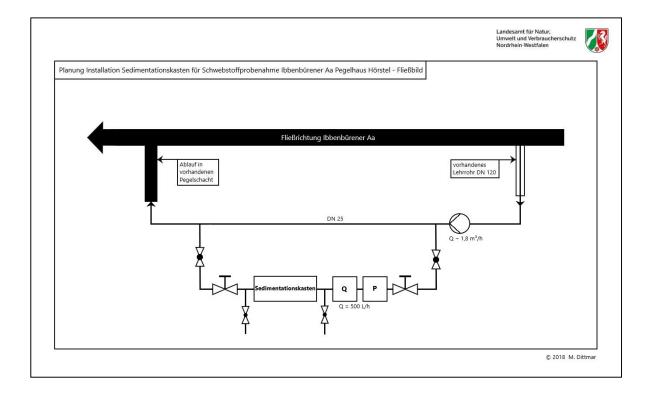
Bericht des Jahres 2024

Durchflussmesser) wird das Durchlaufvolumen abgelesen und unter der Angabe des Zeitpunktes (Datum und Uhrzeit) im Probenahmeprotokoll eingetragen. Die Wiederinbetriebnahme nach der vorhergehenden Probenentnahme entspricht dem Beginn der aktuellen Probennahme. Über Differenzbildung werden Durchlaufvolumen, Pumpdauer und die tatsächliche Förderleistung des Probenahmezyklus berechnet. Als nächstes ist der Kasten über die Entleerungshähne zu entwässern. Danach sind die Verschraubungen, welche den Kasten mit dem Deckel verbinden, zu lösen. Nun wird der Deckel vorsichtig abgehoben und für die spätere Reinigung beiseitegestellt. Im Sedimentationskasten befinden sich drei Sedimentauffangeinsätze, die zu einer Gesamtprobe vereinigt werden. Davor ist die Spritzflasche vorsichtig mit dem im Kasten überstehenden Grubenwasser zu befüllen. Dabei ist darauf zu achten kein Schwebstoff in den Einsätzen aufzuwirbeln. Begonnen wird mit dem hinteren Einsatz, der als

erstes vom Grubenwasser durchflutet wird. Man arbeitet sich immer vom groben zum feinen Probenmaterial. Der Probeneinsatz wird behutsam angehoben und das überstehende Grubenwasser abdekantiert. Hierbei ist äußerst vorsichtig zu arbeiten, da kein Probenverlust durch Aufwirbelungen auftreten darf. Der enthaltene Schwebstoff wird möglichst ohne Verluste in den Edelstahleimer überführt. Die im Probeneinsatz enthaltenen Schwebstoffreste werden mit der Grubenwasser-befüllten Spritzflasche ebenfalls in den Edelstahleimer überführt. Mit den weiteren Probeneinsätzen wird gleich verfahren. Sind alle Schwebstoffe quantitativ in den Edelstahleimer überführt, kann mit der Probenabfüllung in die 3,5 L Weithals-Braunglasflaschen begonnen werden. Die gesammelten Schwebstoffe werden mittels Edelstahlrührer homogenisiert und über den Edelstahltrichter in die Probengefäße gefüllt. Schwebstoffreste an Edelstahleimer, -Trichter und -Rührer sind mit der Grubenwasser-befüllten Spritzflasche in die Probengefäße zu überführen. Die Probengefäße sind zu verschließen und für den Transport kühl und dunkel zu lagern (Kühlboxen, Kühlakkus und Luftblasenfolienverpackung).

Nach der Reinigung des Sedimentationskastens ist der Deckel wieder aufzusetzen und die Verschraubungen mit dem Steckschraubenschlüssel an zu ziehen. Um Verspannungen im Kasten zu vermeiden, ist darauf zu achten die Schrauben über Kreuz fest zu ziehen. Als nächsten Schritt werden die Kugel-

hähne des Zu- und Ablaufes wieder geöffnet und die Pumpe in Betrieb genommen. Sobald der Sedimentationskasten entlüftet ist, wird visuell die Dichtigkeit des Kastens überprüft. Sollte der Sedimentationskasten dicht sein, sind über die beiden Muffenschieber, am Zu- und Ablauf des Kastens, der Durchfluss und der Druck zu regeln. Der Durchfluss ist auf etwa 500 L/h (+/- 50 L/h) und der Druck zwischen 0,1 bis 0,5 bar einzustellen. Der Durchfluss wird im Probenahmeprotokoll dokumentiert.


<u>Probenahmestellen und Messergebnisse:</u>

Duisburg Walsum:

Seit dem 21.12.2021 befindet sich der Schwebstoffsedimentationskasten (SSK) in der Schachthalle. Zuvor war die Messstelle außerhalb in einem Container aufgestellt. Über einen Bypass wird der SSK mit Grubenwasser versorgt.

<u>Ibbenbürener Aa / Pegel Hörstel:</u>

Der Schwebstoffsedimentationskasten befand sich im Pegelhaus Hörstel an der Ibbenbürener Aa und wurde nach der Probenahme am 11.01.2024 aus technischen Gründen außer Betrieb genommen. Die Probenahmestelle befindet sich ca. 5 km unterhalb der Grubenwassereinleitung.

Bericht des Jahres 2024

Die Messergebnisse für das Jahr 2023 und 2024 sind in Tabelle 1 dargestellt.

Für die Grubenwasserhaltung Walsum wurde in den letzten Jahren eine Zunahme der PCB Konzentrationen im Schwebstoff für die typischen bergbaubürtigen Kongenere PCB-28 und PCB-52 festgestellt, die sich im Jahr 2024 nicht fortgesetzt hat. Die Konzentration für PCB-28 liegt nun niedriger als 2023 und auf dem Wert der ½ UQN und für PCB-52 liegt die Konzentration mit 9,6 μ g/kg wenig darunter. Auch für die übrigen Kongenere liegen die Werte geringfügig niedriger als im letzten Jahr und erreichen mit maximal 2,6 μ g/kg ein deutlich niedrigeres Konzentrationsniveau als für die o.g. Kongenere.

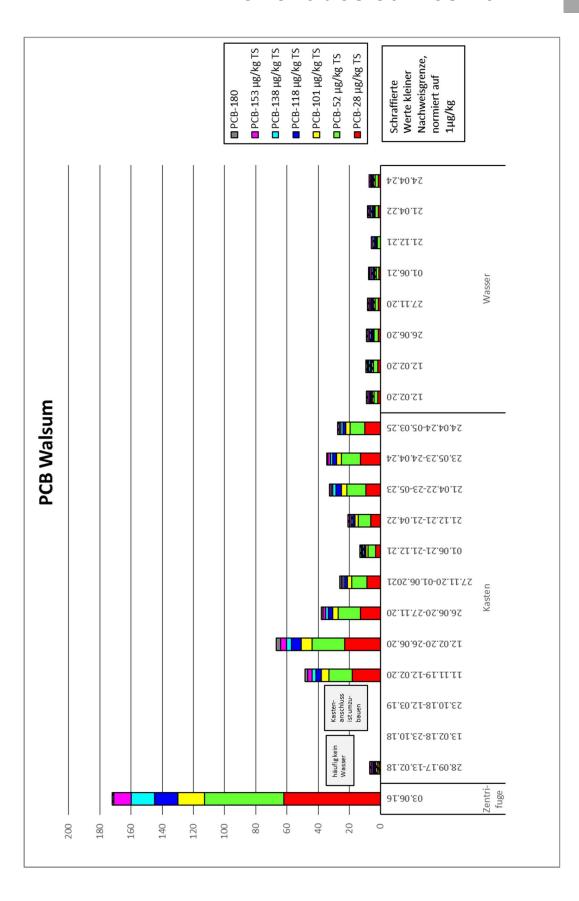
Für die Untersuchungsstelle in der Ibbenbürener Aa (Hörstel) lässt sich innerhalb der Jahre eine hohe Schwankungsbreite der Einzelergebnisse beobachten (s. Abbildung unten). Das Konzentrationsniveau des bergbautypischen Kongeners 28 lag im Jahr 2023 mit 12,5 μ g/kg im unteren zweistelligen Bereich und damit oberhalb des Wertes der ½ UQN. Ähnliche Konzentrationsniveaus im Jahresmittel waren auch in den Jahren 2020 und 2022 zu beobachten, im Jahr 2021 lag das Jahresmittel mit 7,5 μ g/kg

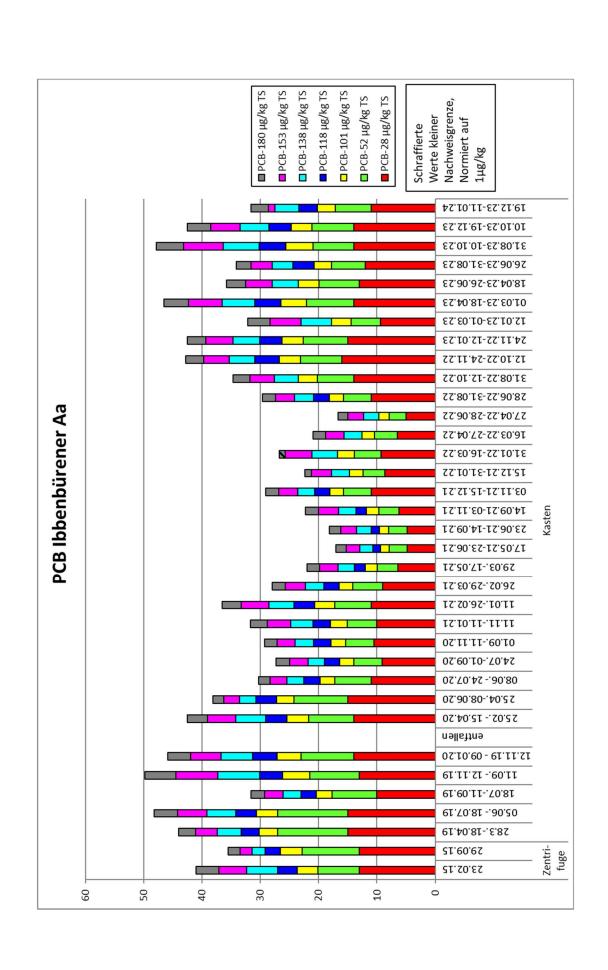
deutlich niedriger. Die Konzentrationen der übrigen Kongenere verhalten sich in den Jahren gleichsinnig; das Kongener PCB-52 mit ungefähr halb so hohen Konzentrationen wie PCB-28. Die anderen untersuchten Kongenere weisen Konzentrationen < 5 μ g/kg auf. Die einzigen Ergebnisse aus 2024 für den Jahreswechsel 2023/2024 liegen in einer ähnlichen Größenordnung, wie 2023.

Bericht des Jahres 2024

Tabelle 3: Ergebnisse der amtlichen Überwachung der aktiven Wasserhaltungen durch das LANUV mittels Schwebstoffsammelkästen

Gewässer	Gewässer		Rhein			Ibbenbürener Aa									
Ort		Walsum			Hörstel										
Messstellennumme	r	-	-	-	024478										
Datum	21.04.22- 23.05.23	23.05.23- 24.04.24	24.04.24- 05.03.25	24.11.22- 12.01.23	12.01.23- 01.03.23	01.03.23- 18.04.23	18.04.23- 26.06.23	26.06.23- 31.08.23	31.08.23- 10.10.23	10.10.23- 19.12.23	19.12.23- 11.01.24				
Durchfluss Wasser gesamt	m³	1662	2592	1816	164	178	132	290	153	284	83	20,6			
Laufzeit	h	9527	8089	7561	1175,5	1151,5	1154,7	1653,4	1582	960,8	1679	554			
Masse Schweb- stoff (feucht)	g	1310,4	933,5	698,1	596	908,71	563,6	1487,6	2144,9	1013,3	719	585,4			
Gesamttrocken- rückstand	Gew %	49,4	26,5	13,5	10,4	11,34	12,7	12,7	8,5	12,6	12,5	20,9			
Masse TS (berechnet)	g TS	647,3	247,4	94,1	61,9	103	71,5	188,9	182,3	127,7	89,9	122,3			
Abfiltrierbare Stoffe (berechnet)	mg/l	0,39	0,10	0,05	0,38	0,58	0,54	0,65	1,19	0,45	1,08	5,94			
PCB 4/10*	μg/kg TS	2,3	2,4	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0			
PCB-28	μg/kg TS	9,4	13	10	15	9,4	14	13	12	14	14	11			
PCB-52	μg/kg TS	12	12	9,6	7,6	5	8,1	6,9	5,8	7	7,1	6,1			
PCB-101	μg/kg TS	3,6	3,3	2,6	3,7	3,4	4,4	3,6	3	4,6	3,6	3,1			


Gewässer Ort Messstellennummer Datum		Rhein Walsum			Ibbenbürener Aa Hörstel									
		21.04.22- 23.05.23	23.05.23- 24.04.24	24.11.22- 12.01.23	12.01.23- 01.03.23	01.03.23- 18.04.23	18.04.23- 26.06.23	26.06.23- 31.08.23	31.08.23- 10.10.23	10.10.23- 19.12.23	19.12.23- 11.01.24			
		PCB-118	μg/kg TS	3,6	2,2	1,9	3,8	n.b.	4,4	n.b.	3,6	4,6	3,8	3,2
PCB-138	μg/kg TS	1,9	1,5	1,2	4,6	5,2	5,6	4,5	3,4	6,2	5	4,1		
PCB-153	μg/kg TS	<1,0	1,6	1,3	4,6	5,3	5,8	4,5	3,6	6,8	5	1,1		
PCB-180	μg/kg TS	1,2	<1,0	<1,0	3,2	3,9	4,2	3,3	2,5	4,6	4	3		
TCBT 21	μg/kg TS	6,5	4,6	4,5	5,4	n.b.	4,5	4,5	4	5,2	5,4	4,8		
TCBT 27	μg/kg TS	2,1	2,1	1,9	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0		
TCBT 28	μg/kg TS	1,9	2,1	1,8	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0		
TCBT 52	μg/kg TS	1,3	<1,0	<1,0	1,3	<1,0	1,1	1	<1,0	1,2	1,2	1,1		
TCBT 74	μg/kg TS	1,7	1,5	1,1	n.b.	1,2	n.b.	1,4	1,3	2	1,8	1,6		
TCBT 80	μg/kg TS	11	9,5	8,8	7,7	n.b.	6,5	n.b.	5,5	7,4	7,4	6,6		
Beryllium	mg/kg	2,5	1,7	1,5	4,3	5	5,2	5,2	4,8	4,1	4,7	4,1		
Antimon	mg/kg	12	5	4,6	6,9	5,7	5,8	5,2	5,6	5,4	5,6	4,7		
Selen	mg/kg	0,98	0,77	0,62	2,3	2,5	2,4	1,9	2	3,5	2,5	2,3		
Zinn	mg/kg	190	63	70	6,2	6,7	7,1	5,4	6,4	6,7	6,9	6,5		
Tellur	mg/kg	0,16	0,084	n.b.	0,075	0,069	n.b.	<0,054	n.b.	0,071	0,076	0,074		
Thallium	mg/kg	0,15	0,15	0,085	0,32	0,41	0,35	0,31	0,3	0,29	0,36	0,39		
Uran	mg/kg	0,53	0,5	0,37	0,96	1,2	1,3	0,86	0,94	0,89	1,3	1,2		


Bericht des Jahres 2024

Gewässer Ort		Rhein Walsum			Ibbenbürener Aa Hörstel									
Datum		21.04.22-	23.05.23-	24.04.24-	24.11.22-	12.01.23-	01.03.23-	18.04.23-	26.06.23-	31.08.23-	10.10.23-	19.12.23-		
		23.05.23	24.04.24	05.03.25	12.01.23	01.03.23	18.04.23	26.06.23	31.08.23	10.10.23	19.12.23	11.01.24		
Aluminium	mg/kg	8100	3300	3700	20000	21000	24000	23000	21000	21000	22000	21000		
Arsen	mg/kg	17	<11	<10	34	32	33	30	35	36	37	33		
Cadmium	mg/kg	2,4	1,6	<1,0	2,6	2,9	2	2,3	2,9	2	2,5	2,3		
Kobalt	mg/kg	52	25	17	140	110	85	140	180	120	130	140		
Chrom	mg/kg	71	48	80	56	n.b.	50	42	51	44	50	53		
Kupfer	mg/kg	2500	3400	3400	160	n.b.	150	97	200	120	310	440		
Eisen	mg/kg	190000	290000	180000	170000	170000	170000	180000	180000	160000	150000	130000		
Mangan	mg/kg	6500	2200	1200	32000	22000	16000	44000	52000	27000	25000	34000		
Nickel	mg/kg	94	100	77	130	120	100	130	170	110	130	160		
Blei	mg/kg	170	100	140	64	66	68	50	65	67	84	86		
Vanadium	mg/kg	19	<10	<10	51	53	64	49	56	63	68	63		
Zink	mg/kg	4700	5400	5400	1300	1300	1200	1300	1600	1200	1400	1500		

^{*}Anmerkung: Die PCB-Kongenere 4/10 sind nicht Bestandteil der normierten bzw. abgesicherten Methode und daher orientierend zu betrachten.

Bericht des Jahres 2024

